admin / 27.06.2018

5 25 дискета

Содержание

Гибкие магнитные диски

В 1969 года первая реализация гибкого диска была использована в системе универсальных компьютеров IBM 370. Это было устройство только для чтения, в форме пластмассового диска диаметром 8 (20 сантиметров), покрытого оксидом железа, весом менее 2 унций и емкостью около 80 Кбайт. Диск размещался в защитном корпусе, облицованном изнутри тканевым покрытием для его очистки.

В 1973 года IBM выпускает новую версию такого устройства для использования в системах ввода данных серии 3740. Оно имело совершенно другой формат записи, двигатель вращался в противоположном направлении, устройство обладало способностью как чтения, так и записи и имело вместимость 256 Кбайт. В 1976 года (примерно в это время персональные компьютеры выходили на сцену) форм-фактор 8 был заменен дискетой в 5.2 дюйма, а затем — 3.5 дюймов.

Первоначально 5.25 (133 миллиметров) дискета имела вместимость 160 Кбайт, которую быстро сменили 180 и затем 360 Кбайт с появлением двусторонних дисков. В 1984 года 5.25 дюйма дискета достигла максимальной вместимости в 1.2 Мбайт, и тогда же Apricot и Hewlett-Packard начали выпускать персональные компьютеры с новым 3.5 дюймовом (89 миллиметров) дисководом Sony емкостью 720 Кбайт. Через три года емкость удвоилась до 1.44 Мбайт.

Дискета состоит из круглой полимерной подложки, покрытой с обеих сторон магнитным оксидом и помещенной в пластиковую упаковку, на внутреннюю поверхность которой нанесено очищающее покрытие. В упаковке с двух сторон сделаны радиальные прорези, через которые головки считывания/записи накопителя получают доступ к диску.

Когда диск 3.5 дюйма вставляется в устройство, защитная металлическая заслонка отодвигается, шпиндель дисковода входит в среднее отверстие, а боковой штырек привода помещается в прямоугольное отверстие позиционирования, расположенное рядом. Двигатель вращает диск с частотой 300 оборотов в минуту.

Головка перемещается ведущим винтом, который в свою очередь управляется шаговым двигателем, и, когда винт поворачивается на определенный угол, головка проходит установленное расстояние. Плотность записи данных на дискету ограничивается точностью шагового двигателя, в частности, это означает 135 tpi для дискет 1.44 Мбайт. Диск имеет четыре датчика: дисковый двигатель; защита от записи; наличия диска; и датчик дорожки 00 (остановка на краю дискеты).

Дисководы для гибких дискет используют так называемый «трекинг разомкнутого цикла», они фактически не ищут до-рожки но просто устанавливают головку в «правильную» позицию. В жестких дисках, наоборот, двигатели сервомотора используют головки для проверки позиционирования, что позволяет производить запись с поперечной плотностью во много сотен раз выше, чем это возможно на гибком диске.

За прошедшие годы был ряд попыток увеличить вместимость дискеты, но ни одна не имела успеха. В 1991 года IBM предложила стандарт на НГМД 2.88 Мбайт, использующие дорогие бариево-ферритовые диски — ED -дискеты (Extra High Density), однако это решение не получило распространения. В 1993 года Iomega и 3М предложили «флоптический» диск емкости 21 Мбайт; однако этого не было достаточно, чтобы привлечь интерес потребителей, и изделие исчезло с рынка — оно было чрезмерно дорогим и имело слишком маленькую емкость.

Накопитель на гибких магнитных дисках

Не следует путать с несимметричным диметилгидразином (1,1-диметилгидразином) — компонентом ракетного топлива. У этого термина существуют и другие значения, см. Накопитель.

Содержимое этой статьи или раздела нуждается в чистке. Текст содержит много маловажных, неэнциклопедичных или устаревших подробностей. Пожалуйста, улучшите статью в соответствии с правилами написания статей.

Сравнение5¼», 1,2MB5¼», 1,2MB и 3½», 2,88MB3½», 2,88MB

Накопитель на гибких магнитных дисках (англ. floppy disk drive) — дисковод, предназначенный для считывания и записи информации с дискеты.

Приводы (позиционирования головок и вращения) и система считывания-записи управляется электронной схемой, размещённой на печатной плате, которая находится внутри корпуса дисковода. В отечественной терминологии система управления называлась КНГМД — контроллер накопителя на гибких магнитных дисках.

Накопители на гибких дисках, равно как и сами носители — дискеты, были массово распространены с 1970-х и до конца 1990-х годов. В XXI веке НГМД уступают место более ёмким CD, DVD и удобным в использовании флеш-накопителям.

История

  • 1967 год — Алан Шугарт возглавлял команду, которая разрабатывала дисководы в лаборатории фирмы IBM, где были созданы накопители на гибких дисках. Дэвид Нобль (англ. David Noble), один из старших инженеров, работающих под его руководством, предложил гибкий диск (прообраз дискеты диаметром 8″) и защитный кожух с тканевой прокладкой.
  • 1971 год — фирмой IBM была представлена первая дискета диаметром в 8″ (200 мм) с соответствующим дисководом.
  • 1973 год — Алан Шугарт основывает собственную компанию Shugart Associates.
  • 1976 год — Финне Коннер (англ. Finis Conner) пригласил Алана Шугарта принять участие в разработке и выпуске дисководов с жёсткими дисками диаметром 5¼″, в результате чего Shugart Associates, разработав контроллер и оригинальный интерфейс Shugart Associates SA-400, выпустила дисковод для миниатюрных (mini-floppy) гибких дисков на 5¼″, который, быстро вытеснив дисководы для дисков 8″, стал популярным в персональных компьютерах. Компания Shugart Associates также создала интерфейс Shugart Associates System Interface (SASI), который после формального одобрения комитетом ANSI в 1986 году был переименован в Small Computer System Interface (SCSI).
  • 1981 год — компания Sony выводит на рынок дискету диаметром 3½″ (90 мм). В первой версии (DD) объём составляет 720 килобайт (9 секторов). В 1984 году компания Hewlett-Packard впервые использовала этот накопитель в своем компьютере HP-150. Поздняя версия (HD) имеет объём 1440 килобайт (1,44 мегабайта; 18 секторов).
  • 1984 год — компания Apple стала использовать накопители 3½″ в компьютерах Macintosh
  • 1987 год — 3½″ HD накопитель появился в компьютерных системах PS/2 фирмы IBM и становится стандартом для массовых ПК.
  • 1987 год — официально представлены разработанные в 1980-х годах компанией Toshiba дисководы сверхвысокой плотности (англ. Extra High Density, ED), носителем для которых служила дискета ёмкостью 2880 килобайт (2,88 мегабайта; 36 секторов).

Конструкция

Механика

Для считывания с поверхности диска. Двигатель, который осуществляет перемещения головок по диску в двух направлениях с определенным приращением, или шагом, называется шаговым двигателем. Двигатель управляется контроллером диска, который устанавливает головки в соответствии с любым относительным приращением в пределах границ перемещения привода головок. В миниатюрных дисководах на 3½″ головки монтируются на червячной передаче, приводимой в движение непосредственно валом шагового двигателя.

Диски имеют два типа плотности — радиальную и линейную. Радиальная плотность указывает, сколько дорожек может быть записано на диске, и выражается в количестве дорожек на дюйм (англ. Track Per Inch, TPI). Линейная плотность — это способность отдельной дорожки накапливать данные и выражается в количестве битов на дюйм (англ. Bits Per Inch, BPI). Шаговые двигатели не могут осуществлять непрерывное позиционирование, обычно он поворачивается на точно определенный угол и останавливается. Большинство шаговых двигателей, установленных в дисководах гибких дисков, осуществляют перемещение с определенным шагом, связанным с расстоянием между дорожками на диске. За исключением дисковода гибких дисков диаметром 5¼″ ёмкостью 360 Кбайт, которые выпускались только с плотностью 48 TPI и в которых использовался шаговый двигатель с приращением 3,6°, во всех остальных типах дисководов (96 или 135 TPI) обычно используется шаговый двигатель с приращением 1,8°. Кроме того, шаговый двигатель выполняет перемещение между фиксированными ограничителями и должен останавливаться при определенном положении ограничителя.

Позиционирование головок — это операция расположения головок относительно дорожек на диске (узкие концентрические кольца на диске), позволяет приступить к чтению или записи информации на диск. Цилиндр (англ. cylinder) — количество дорожек, с которых можно считать информацию, не перемещая головок. Кольцевые дорожки, расположенные друг под другом на разных сторонах диска, образуют воображаемый цилиндр, отсюда и название. Термин обычно используется как синоним дорожки, а поскольку гибкий диск в дискете имеет две стороны, а дисковод для гибких дисков — только две головки, в гибком диске на один цилиндр приходится две дорожки.

  • Конструкция дисководов
  • Чертежи из патентов IBM

  • Головки чтения/записи 3½″ дисковода гибких дисков

Электроника

Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.
  • Конструкция дисководов
  • Shugart SA 400 Minifloppy — 5¼″ дисковод гибких дисков с интерфейсом Shugart SA400.

  • Shugart SA 400 Minifloppy — вид сзади.

  • Контроллер дисковода гибких магнитных дисков (КНГМД) IBM PC/XT для подключения внутреннего и внешнего дисковода.

Подключение

Для подключения дисковода имеются два разъема: один для электрического питания, а другой для передачи данных и сигналов управления. Эти разъемы в компьютерной промышленности стандартизованы: для подключения питания используется четырёхконтактный линейный разъем Mate-N-Lock фирмы AMP большого и малого размеров, сигнальный — 34-контактные разъемы. В дисководах формата 5¼″ обычно используется большой разъем для питания, в то время как в большинстве дисководов формата 3½″ для питания используется разъем меньшего размера.

«Странность» сигнального кабеля заключается в том, что линии 10—16 разрезаны и переставлены (перекручены) между разъемами дисководов. Это перекручивание переставляет первое и второе положения перемычки выбора дисковода и сигналы включения двигателя, а следовательно, меняет на противоположные установки сигнала «DS» для дисковода, находящегося за перекручиванием. Соответственно все дисководы в компьютере с этим типом кабеля имеют перемычки, установленные одинаково, а настройка и установка дисководов (вместо первый и второй, они обозначаются в системе как A и B) упрощается. Как правило, материнская плата содержит интегрированный контроллер дисководов (равно как и отдельная плата контроллера, существовавшая ранее), обеспечивающий установку пары дисководов.

При подключении кабелей необходимо учитывать их ориентацию, в случае если неправильно подключён сигнальный кабель, лампочка на лицевой панели дисковода будет светиться сразу после подачи питания. В случае же неправильной ориентации кабеля питания на электронную схему управления дисководом вместо 5 В подаётся питание 12 В, что гарантированно приводит к выходу её из строя. Учитывая, что стоимость ремонта штучной платы превышает оптовую стоимость самого дисковода, ремонт дисковода, как правило, экономически не целесообразен.

  • Электрическое подключение дисководов
  • Интерфейс для подключения 3½″ дисковода гибких дисков: малогабаритный разъём питания и разъём для подключения 34-контактного сигнального кабеля.

  • Кабели: слева питания, справа — сигнальный.

  • „Странный“ сигнальный кабель со скруткой.

  • Колодки для подключения 5¼″ (слева на фото) и 3½″ (справа) дисководов различны. Для подключения на кабеле 3½″ дисковода к колодке для 5¼″ дисковода, мог быть использован специальный переходник.

Программирование контроллера

Контроллер гибких дисков, со стороны современного программирования, выглядит достаточно примитивно — регистры, имеющие байтовую организацию, сведены в блок из восьми последовательно расположенных ячеек (реально используется лишь часть из них).

Адрес Обозначение Чтение/Запись Назначение
3F016 Не используется
3F116 Не используется
3F216 DOR Чтение/Запись Регистр цифрового вывода
3F316 TSR Чтение/Запись Регистр привода ленточного накопителя
3F416 MSR Чтение Основной регистр статуса
3F416 DSR Запись Регистр выбора скорости передачи данных
3F516 FIFO Чтение/Запись Регистр буфера данных
3F616 Не используется
3F716 DIR Чтение Регистр цифрового ввода
3F716 CCR Запись Регистр управления конфигурацией
Регистр цифрового вывода (англ. Digital Output Register, DOR)
  • биты 0 и 1 (DS0 и DS1) — двоичное кодирование выбираемого дисковода (одного из четырёх),
  • бит 2 (nRES) — разрешение работы контроллера («1») / сброс контроллера («0»),
  • бит 3 (DMAE) — управление работой схемы регенерации сигналов прерывания и прямого доступа к памяти («0» — разрешено, «1» — запрещено),
  • бит 4 (ME0), 5 (ME1), 6 (ME2) и 7 (ME3), — управление мотором вращения диска дисковода 0, 1, 2 и 3 соответственно («1» — двигатель включен).

Регистр привода ленточного накопителя (англ. Tape Drive Register, TDR)

Предназначен для обслуживания ленточного накопителя, поэтому использует свободные разряды (с третьего по восьмой), но не имеет единого стандарта.

Основной регистр статуса (англ. Main Status Register, MSR)

Доступен только для записи. В «1» соответствующий бит устанавливается в случае следующего состояния:

  • бит 0 (D0B) — дисковод 0 находится в состоянии поиска,
  • бит 1 (D1B) — дисковод 1 находится в состоянии поиска,
  • бит 2 (D2B) — дисковод 2 находится в состоянии поиска,
  • бит 3 (D3B) — дисковод 3 находится в состоянии поиска,
  • бит 4 (CB) — контроллер занят выполнением команды,
  • бит 5 (NDMA) — выполняемая контроллером операция не использует ПДП (NonDMA),
  • бит 6 (DIO) — текущее направление передачи данных от процессора к контроллеру («0») или от контроллера к процессору («1»),
  • бит 7 (RQM) — регистр данных FIFO готов к обмену с процессором.
Регистр выбора скорости передачи данных (англ. Data Rate Select Register, DSR)
  • биты 0 и 1 (DRATE) — кодируют скорость передачи данных:
Значение разрядов DRATE Скорость передачи данных
Бит 1 Бит 0 Режим FM Режим MFM
0 0 250 кб/с 500 кб/с
0 1 150 кб/с 300 кб/с
1 0 125 кб/с 250 кб/с
1 1 1 Мб/с
  • биты 2, 3 и 4 (PRECOMP) — кодируют параметр задержки предкомпенсации:
Значение разрядов PRECOMP Задержка предкомпенсации, нс
Бит 4 Бит 3 Бит 2
0 0 0 «По умолчанию»
0 0 1 41,67
0 1 0 83,34
0 1 1 125,00
1 0 0 166,67
1 0 1 208,33
1 1 0 250,00
1 1 1 0 (нет предкомпресии)
  • бит 5 не используется, должен содержать «1»,
  • бит 6 (Power Down) — если «1», то контроллер переходит в режим пониженного электропитания, для выхода используется программный или аппаратный сброс,
  • бит 7 (S/W Reset) — установка в «1» этого разряда вызовет сброс контроллера. По окончании операции сбрасывается автоматически.
Регистр буфера данных (англ. DATA или англ. FIFO)

Участвует во всех дисковых операциях чтения и записи. Ёмкость — 16 байт.

Регистр цифрового ввода (англ. Digital Input Register)

Доступен только для считывания. Старший разряд (англ. Disk CHange, DCH) отображает сигнал смены диска, остальные — зарезервированные.

Регистр управления конфигурацией (англ. Configuration Control Register, CCR)

Доступен только для записи. Два младших разряда дублируют функции регистра DSR в аспекте задачи скорости передачи данных, остальные разряды зарезервированные.

Сведения о состоянии контроллера ST0—ST3

Сведения о состоянии контроллера хранятся в не имеющих собственных адресов, и поэтому недоступных, регистрах.

Форматы

Дополнительные сведения: Дискета

8″

Дисковод и дискета 8″ в сравнении с дискетой 3½″

Первые дисководы были предназначены для работы с дискетами диаметром 8″, которые вмещали 80, 256 или 800 КБ информации.

5¼″

5¼″ дисковод гибких дисков оригинального IBM PC, Model 5150. Дисковод гибких дисков двойного формата, 5¼″ и 3½″

Следующим массовым форматом стали дискеты диаметром 5¼″; распространение с ними получили и соответствующие дисководы.

В качестве устройства для постоянного хранения данных первого массового персонального компьютера — IBM PC, выпущенного в 1981 году фирмой IBM, — предполагалось использовать один или два накопителя на 5¼-дюймовых гибких дисках.

Высота дисковода для 5¼-дюймовых дискет равна 1 U, а ширина почти равна трём его высотам. Это иногда использовали производители корпусов компьютеров, где три устройства, помещённые в квадратную «корзину», могли быть вместе с ней переориентированы с горизонтального на вертикальное расположение.

3½″

Дисководы формата 3½″ высокой плотности (неформатированная ёмкость дискеты, определяемая плотностью записи и площадью носителя, составляет 2 Мб) впервые появились в компьютерах IBM PS/2 в 1987 году. Эти дисководы записывают 80 цилиндров с 18 секторами на дорожке, создавая в результате ёмкость 1,44 Мб, имеют скорость вращения 300 об/мин и записывают в 1,2 раза больше данных, чем дисководы формата 5¼″ на 1,2 Мб (скорость передачи данных в этих дисководах высокой плотности одинакова, и они совместимы с одними и теми же контроллерами высокой и низкой плотности). Для того, чтобы использовать максимальную для большинства стандартных контроллеров дисководов высокой и низкой плотности скорость передачи данных 500 000 бит/с, эти дисководы должны иметь скорость 300 об/мин. Если дисковод будет вращать дискету со скоростью 360 об/мин (как дисковод формата 5¼″), то число секторов на дорожку должно быть уменьшено до 15, иначе контроллер не будет успевать обрабатывать сигналы.

Промышленный выпуск дисководов сверхвысокой ёмкости на 2,88 Мбайт Toshiba начала 1989 году. В 1991 году IBM официально приняла эти дисководы для установки в компьютерах PS/2, и практически все PS/2, выпущенные с тех пор, содержат эти дисководы как стандартное оборудование. Для работы с такими дисководами требуется установленная ОС MS-DOS версии 5.0 или старше.

Для правильной работы дисковода на 2,88 Мб необходимо обновление дискового контроллера, так как эти дисководы имеют ту же скорость вращения 300 об/мин, но записывают 36, а не 18 секторов на одной дорожке. В отличие от контроллеров дисководов предыдущих форматов, максимальная скорость передачи данных которых составляет 500 000 бит/с, для того что бы эти 36 секторов были считаны или записаны за то же время, которое требуется дисководу на 1,44 Мбайт для чтения и записи 18 секторов, от контроллера требуется гораздо более высокой скорости передачи данных, 1 000 000 бит/с.

Для улучшения этой статьи желательно:

  • Найти и оформить в виде сносок ссылки на независимые авторитетные источники, подтверждающие написанное.
  • Проставив сноски, внести более точные указания на источники.
  • Исправить статью согласно стилистическим правилам Википедии.
  • Викифицировать статью.

Конструкция дискеты

Основными компонентами дискеты являются магнитный диск, хранящий информацию и конверт, выполняющий защитную функцию для диска. Конверт 8- и 5,25-дюймовых дискет был сделан из материала, позволяющего достаточно легко его изгибать, что и стало поводом называть их «гибкими». 3,5-дюймовые дискеты уже производились в жёстком пластмассовом корпусе, но название за ними сохранилось.

В конверте сделано два основных отверстия: одно в центре для того, чтобы шпиндельный двигатель мог захватить и вращать магнитный диск, другое вытянуто от центра к краю, и служит для того, чтобы головки могли касаться поверхности диска. у двусторонних дискет для этого по отверстию с каждой стороны. У трёхдюймовых дискет отверстия для головок при транспортировке закрыты шторкой, которая открывается механикой дисковода при вставлении дискеты.

На конверте также располагается окошко или вырез для защиты от записи. На 8- и 5-дюймовых дискетах для защиты требуется заклеить вырез (для чего вместе с дискетой поставлялся кусочек бумаги с клеевым слоем). На 3-дюймовой дискете достаточно передвинуть ползунок в окошке, чтобы оно открылось.

Хронология возникновения форматов дискет

Формат Год возникновения Объём в килобайтах
8″ 1971 80
8″ 1973 256
8″ 1974 800
8″ двойной плотности 1975 1000
5,25″ 1976 110
5,25″ двойной плотности 1978 360
5,25″ четырёхкратной плотности 1982 720
5,25″ высокой плотности 1984 1200
3″ двойной плотности 1982 360
3″ двойной плотности 1984 720
3,5″ двойной плотности 1984 720
2″ двойной плотности 1985 720
3,5″ высокой плотности 1985 1440
3,5″ расширенной плотности 1991 2880

Следует отметить, что фактическая ёмкость дискет зависела от способа их форматирования. Поскольку кроме самых ранних моделей, практически все флоппи-диски не содержали жёстко сформированных дорожек, дорога для экспериментов в области более эффективного использования дискеты была открыта для системных программистов. Результатом стало появление множества не совместимых между собою форматов дискет даже под одними и теми же операционными системами. Например, для RT-11 и её адаптированных в СССР версий количество находящихся в обороте несовместимых форматов дискеты превышало десяток. (Наиболее известные — MX, MY применяемые в ДВК).

Дополнительную путаницу внёс тот факт, что компания Apple использовала в своих компьютерах Macintosh дисководы, применяющие иной принцип кодирования при магнитной записи, чем на IBM PC. В результате, несмотря на использование идентичных дискет, перенос информации между платформами на дискетах не был возможен до того момента, когда Apple внедрила дисководы высокой плотности SuperDrive, работавшие в обоих режимах.

«Стандартные» форматы дискет IBM PC различались размером диска, количеством секторов на дорожке, количеством используемых сторон (SS обозначает одностороннюю дискету, DS — двухстороннюю), а также типом (плотностью записи) дисковода. Тип дисковода маркировался как SD — одинарная плотность, DD — двойная плотность, QD — четверная плотность (использовался в клонах, таких как Robotron-1910 — 5,25″ дискета 720 К , Amstrad PC, ПК Нейрон — 5,25″ дискета 640 К, HD — высокая плотность (отличался от QD повышенным количеством секторов), ED — расширенная плотность.

8-дюймовые дисководы долгое время были предусмотрены в BIOS и поддерживались MS-DOS, но точной информации о том, поставлялись ли они потребителям, нет (возможно, поставлялись предприятиям и организациям и не продавались физическим лицам).

Кроме вышеперечисленных вариаций форматов, существовал целый ряд усовершенствований и отклонений от стандартного формата дискет.

Наиболее известные — 320/360 Кб дискеты Искра-1030/Искра-1031 — фактически представляли из себя SS/QD дискеты, но бут-сектор их был отмаркирован как DS/DD. В результате стандартный дисковод IBM PC не мог прочесть их без использования специальных драйверов (800.com), а дисковод Искра-1030/Искра-1031, соответственно, не мог читать стандарные дискеты DS/DD от IBM PC.

Специальные драйверы-расширители BIOS 800, pu_1700 и ряд других позволяли форматировать дискеты с произвольным числом дорожек и секторов. Поскольку дисководы обычно поддерживали от одной до 4 дополнительных дорожек, а также позволяли, в зависимости от конструкционных особенностей, отформатировать на 1-4 сектора на дорожке больше, чем положено по стандарту, эти драйвера обеспечивали появление таких нестандартных форматов как 800 Кб (80 дорожек, 10 секторов) 840 Кб (84 дорожки, 10 секторов) и т. д. Максимальная ёмкость, устойчиво достигавшаяся таким методом на 3,5? HD-дисководах, составляла 1700 Кб.

Эта техника была впоследствии использована в Windows 98, а также Майкрософтовском формате дискет DMF, расширившим ёмкость дискет до 1,68 Мб за счёт форматирования дискет на 21 сектор в аналогичном IBMовском формате XDF.

XDF использовался в дистрибутивах OS/2, а DMF — в дистрибутивах различных программных продуктов от Майкрософт.

Драйвер pu_1700 позволял также обеспечивать форматирование со сдвигом и интерливингом секторов — это ускоряло операции последовательного чтения-записи, но лишало совместимости даже при стандартном количестве секторов, сторон и дорожек.

Наконец, достаточно частой модификацией формата дискет 3,5″ является их форматирование на 1,2 Мб (с пониженным числом секторов). Эта возможность обычно может быть включена в BIOS современных компьютеров. Такое использование 3,5? характерно для Японии и ЮАР. В качестве побочного эффекта, активация этой настройки BIOS обычно даёт возможность читать дискеты, отформатированные с использованием драйверов типа 800.

В дополнителных (нестандартных) дорожках и секторах иногда размещали данные защиты от копирования проприетарных дискет. Стандартные программы, такие как diskcopy, не переносили эти сектора при копировании.

Неформатированная ёмкость дискеты 3,5″, определяемая плотностью записи и площадью носителя, составляет 2 Мб.

Высота дисковода для 5,25″ дискет равна 1 U. Все дисководы компакт-дисков, включая Blu-ray, имеют ширину и высоту такую же, как у 5,25″ дисковода (это не относится к дисководам ноутбуков).

Ширина дисковода 5,25″ почти равна трём его высотам. Это иногда использовали производители корпусов ЭВМ, где три устройства, помещённые в квадратную «корзину», могли быть вместе с ней переориентированы с горизонтального на вертикальное расположение.

Исчезновение

Одной из главных проблем, связанных с использованием дискет, была их недолговечность. Наиболее уязвимым элементом конструкции дискеты был жестяной или пластиковый кожух, закрывающий собственно гибкий диск: его края могли отгибаться, что приводило к застреванию дискеты в дисководе, возвращавшая кожух в исходное положение пружина могла смещаться, в результате кожух дискеты отделялся от корпуса и больше не возвращался в исходное положение. Сам пластиковый корпус дискеты не служил достаточной защитой гибкого диска от механических повреждений (например, при падении дискеты на пол), которые выводили магнитный носитель из строя. В щели между корпусом дискеты и кожухом могла проникать пыль.

Массовое вытеснение дискет из обихода началось с появлением перезаписываемых компакт-дисков, и особенно, носителей на основе флэш-памяти, обладающих гораздо меньшей удельной стоимостью, на порядки большей емкостью, большим фактическим числом циклов перезаписи и долговечностью и большей скоростью обмена данными.

Промежуточным вариантом между ними и традиционным дискетами являются магнитооптические носители, Iomega Zip, Iomega Jaz и другие. Такие сменные носители иногда также называют дискетами.

Однако, даже в 2009, дискета (обычно 3,5″) и соответствующий дисковод были необходимы (при невозможности сделать это через интернет непосредственно из операционной системы), чтобы «перепрошить» флэш-память BIOS многих материнских плат, например, Gigabyte. Так же их ещё использовали для работы с небольшими файлами (как правило с текстовыми), для переноски этих файлов с одного компьютера на другой. Дискеты будут использоваться ещё несколько лет, по крайней мере до того момента, когда цена на самые дешёвые flash-накопители не будет сопоставимы с ценами на дискеты .

Дискета

Дискета 3.5″Дисковод для 3.5″ дискет

Диске́та, ги́бкий магни́тный диск (англ. floppy disk, англ. diskette) — сменный носитель информации, используемый для многократной записи и хранения данных. Представляет собой помещённый в защитный пластиковый корпус диск, покрытый ферромагнитным слоем. Для считывания дискет используется дисковод.

В отечественных разработках существовала аббревиатура — ГМД, соответствующая термину «гибкий магнитный диск».

Устройство для работы с ГМД (дисковод гибких дисков, флоппи-дисковод), соответственно, называется НГМД — «накопитель (на) гибких магнитных дисках».

Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Дискеты были массово распространены с 1970-х и до конца 1990-х годов, придя на смену магнитным лентам и перфокартам. В конце XX века дискеты начали уступать более ёмким CD-R и CD-RW, а в XXI веке и более удобным флэш-накопителям.

Промежуточным вариантом между ними и традиционным дискетами являются более современные НГМД, использующие картриджи — Iomega Zip, Iomega Jaz; а также флоптические диски (англ.)русск., например, LS-120 и другие, в которых комбинировались классическая магнитная головка чтения/записи и лазер, используемый для её наведения.

Существовало также семейство накопителей под названием магнитооптические диски (МО), которые представляли собой жёсткий полимерный диск, чтение с которого производилось лазером, а запись — при помощи комбинированного воздействия лазера (для нагрева участка поверхности) и неподвижного магнита (для перемагничивания информационного слоя). Они не являются полностью магнитными, хотя и используют картриджи, по форме напоминающие дискеты.

Форматы, в зависимости от диаметра диска

Дискета 8″

Конструктивно дискета 8″ (диск диаметром 8 дюймов) представляет собой диск из полимерных материалов с магнитным покрытием, заключённый в гибкий пластиковый футляр. В футляре имеются отверстия: большое круглое в центре — для шпинделя, маленькое круглое — окно индексного отверстия, позволяющего определить начало дорожки и прямоугольное с закруглёнными концами — для магнитных головок дисковода. Также внизу располагается выемка, сняв наклейку с которой, можно защитить диск от записи. Форматы дискеты различаются количеством секторов на дорожке. В зависимости от формата, дискеты 8″ вмещают следующие объёмы информации: 80, 256 и 800 КБ.

Внешний вид дискеты 5¼″Пластиковое кольцо на краях приводного отверстия дискеты 5¼″ для повышения износостойкости

Конструкция пятидюймовой (величина 5,25 дюйма примерно равна 13,34 сантиметрам) дискеты мало отличается от восьмидюймовой: окно индексного отверстия располагается справа, а не сверху, прорезь для защиты от записи — тоже в правой части дискеты. Для лучшей сохранности диска его футляр сделан более жёстким, укреплённым по периметру. Для предотвращения преждевременного износа между футляром и диском размещается антифрикционная прокладка, а края приводного отверстия укреплены пластиковым или металлическим кольцом.

Существовали дискеты с жёсткой разбивкой на сектора: они отличались наличием нескольких индексных отверстий по количеству секторов. В дальнейшем от такой схемы отказались.

Как дискеты, так и дисководы пятидюймовых дисков существуют одно- и двусторонние. При использовании одностороннего дисковода считать вторую сторону, просто перевернув дискету, не удаётся из-за расположения окна индексного отверстия — для этого требуется наличие аналогичного окна, расположенного симметрично существующему. Механизм защиты данных также был пересмотрен — окно располагается справа, и заклеенное отверстие означает защищённый диск. Это было сделано для защиты от неправильной установки.

Форматы записи на пятидюймовые дискеты позволяет хранить на ней 110, 360, 720 или 1200 килобайт данных.

  • Устройство дискеты 5¼″
  • Дискета 5,25 дюйма в разобранном виде (с раскрытым футляром): 1 — футляр; 2 — антифрикционные прокладки; 3 — окно для шпинделя привода; 4 — окно индексного отверстия; 5 — окно для магнитных головок; 6 — полимерный диск с магнитным покрытием; 7 — отверстие для шпинделя привода; 8 — индексное отверстие; 9 — выемка защиты от записи

  • Футляр в развёрнутом виде

  • Магнитный диск

  • Варианты закрепления клапанов футляра: термосвариванием (вверху) и склеиванием (внизу)

Информация о содержимом дискеты указывается на этикетке, обычно располагающейся на лицевой стороне в части, противоположной отверстию для магнитной головки дисковода.

Для хранения и транспортировки дискет обычно используются бумажные конверты. На конвертах размещается различная информация о производителе дискеты, либо её наполнении. На оборотной стороне конверта иногда размещается информация по правильному использованию и хранению дискеты.

Информация по использованию дискеты на оборотной стороне конверта Дискета 5¼″, помещённая в конверт Дискета 3.5″ 2,88 МБ

Принципиальным отличием дискеты 3½″ является жёсткий пластмассовый корпус. Вместо индексного отверстия в дискетах диаметром 3½″ используется металлическая втулка с установочным отверстием, которая находится в центре дискеты. Механизм дисковода захватывает металлическую втулку, а отверстие в ней позволяет правильно позиционировать дискету, поэтому отпала необходимость делать для этого отверстие непосредственно в магнитном диске. В отличие от 8″ и 5¼″ дискет, окно для головок дискеты 3½″ закрыто сдвижной металлической заслонкой, которая открывается при установке её в дисковод. Защита от записи выполнена сдвигающейся шторкой в нижнем левом углу. Снизу справа находятся окошки, позволяющие схеме дисковода определить плотность записи на дискету:

  • нет окошка — 720 КБ,
  • окошко расположено в один уровень с окном защиты от записи — 1,44 МБ,
  • окошко расположено выше уровня окна защиты от записи — 2,88 МБ.

Несмотря на многие недостатки — чувствительность к магнитным полям и недостаточную уже к середине 90-х годов ёмкость — формат 3½″ продержался на рынке треть века, начав сдавать позиции лишь после появления доступных по цене накопителей на основе флэш-памяти.

Устройство дискеты 3½″

1 — окошко, определяющее плотность записи (на другой стороне — переключатель защиты от записи); 2 — основа диска с отверстиями для приводящего механизма; 3 — защитная шторка открытой области корпуса; 4 — пластиковый корпус дискеты; 5 — антифрикционная прокладка; 6 — магнитный диск; 7 — область записи (красным условно выделен один сектор одной дорожки).

3″

3-дюймовая дискета от Amsoft (англ.)русск.

Некоторое время имели распространение 3-дюймовые дискеты и дисководы для чтения таковых, производимые компанией Amstrad. К примеру, компьютер ZX Spectrum +3 имел встроенный дисковод такого стандарта, а для японской игровой консоли Famicom (с аксессуаром Disk System) выпускались игры на дискетах таких же габаритов, но не совместимых с ZX.

2″

2-х дюймовая дискета от Canon

Существовали видео-дискеты (англ.)русск. для аналоговой записи (англ.)русск. и хранения композитного видео.

Другие

Также находились в употреблении дискеты 4″, 3¼″, 2,8″, 2½″ и других размеров.

  • 4″ дискета с соответствующим дисководом производства IBM

  • 3¼″ дискета от Dysan (англ.)русск.

  • 2,8″ дискета от Smith Corona (англ.)русск.

Iomega Zip

Основная статья: Iomega Zip Дискета Zip-250

К середине 90-х ёмкости дискеты даже в 2,88 МБ уже было недостаточно. На смену дискете 3,5″ претендовали несколько форматов, среди которых наибольшую популярность завоевали дискеты Iomega Zip. Так же, как и дискета 3,5″, носитель Iomega Zip представлял собой мягкий полимерный диск, покрытый ферромагнитным слоем и заключённый в жёсткий корпус с защитной шторкой. В отличие от 3,5″-дискеты, отверстие для магнитных головок располагалось в торце корпуса, а не на боковой поверхности. Существовали дискеты Zip на 100, 250, а к концу существования формата — и 750 МБ. Кроме бо́льшего объёма, диски Zip обеспечивали более надёжное хранение данных и более высокую скорость чтения и записи, чем 3,5″. Однако они так и не смогли вытеснить трёхдюймовые дискеты из-за высокой цены как дисководов, так и дискет, а также из-за неприятной особенности приводов, когда дискета с механическим повреждением диска выводила из строя дисковод, который, в свою очередь, мог испортить вставленную в него после этого дискету.

Хронология возникновения форматов дискет

Формат Год возникновения Объём в килобайтах
8″ 1971 80
8″ 1973 256
8″ 1974 800
8″ двойной плотности 1975 1000
5¼″ 1976 110
5¼″ двойной плотности 1978 360
5¼″ четырёхкратной плотности 1982 720
5¼″ высокой плотности 1984 1200
3″ 1982 360
3″ двойной плотности 1984 720
3½″ двойной плотности 1984 720
2″ 1985 720
3½″ высокой плотности 1987 1440
3½″ расширенной плотности 1991 2880

Следует отметить, что фактическая ёмкость дискет зависит от способа их форматирования. Поскольку, кроме самых ранних моделей, практически все флоппи-диски не содержат жёстко сформированных дорожек, дорога для экспериментов в области более эффективного использования дискеты была открыта для системных программистов. Результатом стало появление множества не совместимых между собою форматов дискет даже под одними и теми же операционными системами.

Форматы дискет в оборудовании IBM

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 августа 2014 года.

«Стандартные» форматы дискет IBM PC различались размером диска, количеством секторов на дорожке, количеством используемых сторон (SS обозначает одностороннюю дискету, DS — двухстороннюю), а также типом (плотностью записи) дисковода — тип дисковода маркировался:

  • SD (англ. Single Density, одинарная плотность, впервые появился в IBM System 3740),
  • DD (англ. Double Density, двойная плотность, впервые появился в IBM System 34),
  • QD (англ. Quadruple Density, четверная плотность, использовался в отечественных клонах Robotron-1910 — 5¼″ дискета 720 К, Amstrad PC, Нейрон И9.66 — 5¼″ дискета 640 К),
  • HD (англ. High Density, высокая плотность, отличался от QD повышенным количеством секторов),
  • ED (англ. Extra High Density, сверхвысокая плотность).

В дополнительных (нестандартных) дорожках и секторах иногда размещали данные защиты от копирования проприетарных дискет. Стандартные программы, такие, как diskcopy, не переносили эти сектора при копировании.

Рабочие плотности дисководов и ёмкости дискет в килобайтах

Параметр магнитного покрытия 5¼″ 3½″
Двойная плотность (DD) Четверная плотность (QD) Высокая плотность (HD) Двойная плотность (DD) Высокая плотность (HD) Сверхвысокая плотность (ED)
Основа магнитного слоя Fe Fe Co Co Co Ba
Коэрцитивная сила, Э 300 300 600 600 720 750
Толщина магнитного слоя, микродюйм 100 100 50 70 40 100
Ширина дорожки, мм 0,300 0,155 0,115 0,115 0,115
Плотность дорожек на дюйм 48 96 96 135 135 135
Линейная плотность 5876 5876 9646 8717 17434 34868
Ёмкость
(после форматирования)
360 720 1200
(1213952)
720 1440
(1474560)
2880
(2949120)
Сводная таблица форматов дискет, используемых в IBM PC и совместимых ПК

Диаметр диска, ″ 5¼″ 3½″
Ёмкость диска, Кбайт 1200 360 320 180 160 2 880 1 440 720
Байт описания носителя в MS-DOS F916 FD16 FF16 FC16 FE16 F016 F016 F916
Количество сторон (головок) 2 2 2 1 1 2 2 2
Количество дорожек на каждой стороне 80 40 40 40 40 80 80 80
Количество секторов на дорожке 15 9 8 9 8 36 18 9
Размер сектора, байт 512
Количество секторов в кластере 1 2 2 1 1 2 1 2
Длина FAT (в секторах) 7 2 1 2 1 9 9 3
Количество FAT 2 2 2 2 2 2 2 2
Длина корневого каталога в секторах 14 7 7 4 4 15 14 7
Максимальное количество элементов в корневом каталоге 224 112 112 64 64 240 224 112
Общее количество секторов на диске 2400 720 640 360 320 5 760 2 880 1 440
Количество доступных секторов 2371 708 630 351 313 5 726 2 847 1 426
Количество доступных кластеров 2371 354 315 351 313 2 863 2 847 713

Первой (точнее, 0-й) является нижняя головка. В односторонних дисководах фактически используется только нижняя головка, а верхняя заменяется войлочной прокладкой. При этом на односторонних дисководах можно было использовать двухсторонние дискеты, отформатировав каждую сторону отдельно и переворачивая её при необходимости, но чтобы этой возможностью воспользоваться, в пластиковом конверте 8-дюймовой дискеты требовалось прорезать второе индексное окно, симметрично первому.

Все дисководы гибких дисков имеют скорость вращения шпинделя 300 оборотов в минуту, за исключением дисковода для гибких дисков диаметром 5¼″ высокой плотности, шпиндель которого вращается со скоростью 360 мин−1.

Форматы дискет в прочем зарубежном оборудовании

Дополнительную путаницу внёс тот факт, что компания Apple использовала в своих компьютерах Macintosh дисководы, применяющие иной принцип кодирования при магнитной записи, чем на IBM PC — в результате, несмотря на использование идентичных дискет, перенос информации между платформами на дискетах не был возможен до того момента, когда Apple внедрила дисководы высокой плотности SuperDrive, работавшие в обоих режимах.

В компьютерах Commodore Amiga используется свой собственный формат записи на дискету, в результате чего емкость в формате DD возросла с 720 до 880 килобайт, но стандартными средствами чтение-запись таких дискет на других платформах невозможна в принципе. Ёмкость дискет высокой плотности составляет 1.76 МБ против 1.44 на PC, но из-за особенностей реализации контроллера и скорого банкротства Commodore существует только одна модель дисковода (Chinon FZ-357A, штатно устанавливавшийся на Amiga 4000) с уменьшенной вдвое скоростью вращения дискеты, что позволяет работать с дискетами в формате HD.

Достаточно частой модификацией формата дискет 3½″ является их форматирование на 1,2 МБ (с пониженным числом секторов). Эта возможность обычно может быть включена в BIOS современных компьютеров. Такое использование 3½″ характерно для Японии и ЮАР. В качестве побочного эффекта, активация этой настройки BIOS обычно даёт возможность читать дискеты, отформатированные с использованием драйверов типа 800.com.

Особенности использования дискет в отечественной технике

Кроме вышеперечисленных вариаций форматов, существовал целый ряд усовершенствований и отклонений от стандартного формата дискет:

  • например, для RT-11 и её адаптированных в СССР версий количество находящихся в обороте несовместимых форматов дискеты превышало десяток. Наиболее известные — применяемые в ДВК MX, MY;
  • также известны 320/360-килобайтные дискеты Искра-1030/Искра-1031 — фактически они представляли собой SS/QD-дискеты, но их загрузочный сектор был отмаркирован как DS/DD. В результате стандартный дисковод IBM PC не мог прочесть их без использования специальных драйверов (типа 800.com), а дисковод Искра-1030/Искра-1031, соответственно, не мог читать стандартные дискеты DS/DD от IBM PC;
  • в компьютерах платформы ZX-Spectrum применялись дискеты 5.25″ и 3.5″, но применялся свой собственный уникальный формат TR-DOS — 16 секторов на дорожке, каждый сектор по 256 байт (вместо 512 байт, стандартных для IBM PC). Поддерживались как двухсторонние, так и односторонние дискеты и дисководы. В результате объём данных составлял 640 и 320 Кб соответственно. Формат поддерживает только корневой каталог, который занимает только первые 8 секторов 0-й дорожки, в 9-м секторе располагается системная информация о дискете — тип (TR-DOS или нет), одно или двухсторонний диск, общее количество файлов и количество свободных секторов (не байт, а именно секторов). Сектора с 10 по 16 на 0-й дорожке не используются. Все файлы располагаются только последовательно — формат TR-DOS понятия не имеет о фрагментации, а максимальный размер файла — 64 Кб. После удаления файла внутри занятого пространства, появляются свободные сектора, которые занять уже нельзя до тех пор, пока не будет выполнена команда уплотнения диска ″Move″. На IBM PC совместимых компьютерах такие дискеты можно прочитать и записать только с помощью специальных программ, например ZX Spectrum Navigator v.1.14 или ZXDStudio.

Кроме формата TR-DOS, в ZX-Spectrum совместимых компьютерах часто применялись и произвольные форматы дисков. Некоторые электронные журналы и игры на всю дискету использовали свой собственный формат, вообще ни с чем не совместимый. Могли использовать сектора по 512 байт, и даже по 1024 байт, и нередко комбинировали разные размеры секторов на одной дорожке, например, по 256 и по 1024 байт, и просто для разных дорожек применялись разные форматы. Например, так делали в электронном журнале ZX-Format. Причём, от номера выпуска к номеру, данный журнал постоянно менял формат дорожек дискет. Делалось это для двух целей: Во-первых, для увеличения объёма данных на дискете, во-вторых, для защиты дискет от пиратского копирования. Такие дискеты на ZX-Spectrum совместимых компьютерах пользователей можно было только прочитать, запустить с них журнал или игру, но нельзя было ничем скопировать. Для копирования таких дискет, для каждого отдельного номера журнала ZX-Format или игры, нужно было написать на ассемблере свой индивидуальный форматер и копировщик, предварительно взломав остальные ступени защиты. Разумеется, нельзя такие дискеты прочитать и скопировать и на IBM PC-совместимых компьютерах. Однажды попался вообще уникальный формат — кроме нестандартного размера секторов на дорожке (5 секторов по 1024 байта), номера всех 5 секторов были одинаковыми. Для запуска ПО с такой дискеты использовался специальный загрузчик, размещённый на первой после каталога дорожке со стандартным для ZX-Spectrum формата TR-DOS. В ZX-Spectrum совместимых компьютерах одинаковым образом применялись как 5.25″, так и 3.5″ дискеты, формат при этом не зависит ни от размера дискеты, ни от поддерживаемой ей плотности. Но для использования дискет 3.5″ высокой плотности HD, нужно было изолентой заклеить боковое окошко плотности. Дискеты 5.25″ высокой плотности HD можно применять в ZX-Spectrum только в случае использования дисковода, который так же поддерживает плотность HD, но перемычками дисковод нужно предварительно перевести на формат SD (720 Кб).

Драйвер pu_1700 позволял также обеспечивать форматирование со сдвигом и интерливингом секторов — это ускоряло операции последовательного чтения-записи, так как головка при переходе на следующий цилиндр оказывалась перед первым сектором. При использовании обычного форматирования, когда первый сектор всегда находится за индексным отверстием (5¼″) или за зоной прохождения над герконом или датчиком Холла магнитика, закреплённого на моторе (3½″), за время шага головки начало первого сектора успевает проскочить, поэтому дисководу приходится совершать лишний оборот.

Специальные драйверы-расширители BIOS (800, pu_1700, vformat и ряд других) позволяли форматировать дискеты с произвольным числом дорожек и секторов. Поскольку дисководы обычно поддерживали от одной до четырёх дополнительных дорожек, а также позволяли, в зависимости от конструкционных особенностей, отформатировать на 1—4 сектора на дорожке больше, чем положено по стандарту, эти драйверы обеспечивали появление таких нестандартных форматов, как 800 КБ (80 дорожек, 10 секторов), 840 КБ (84 дорожки, 10 секторов) и т. д. Максимальная ёмкость, устойчиво достигавшаяся таким методом на 3½″ HD-дисководах, составляла 1700 КБ. Эта техника была впоследствии использована в форматах дискет Distribution Media Format (DMF) Майкрософт, расширившим ёмкость дискет до 1,68 МБ за счёт форматирования дискет на 80 дорожек и 21 сектор (например, в дистрибутивах Windows 95), аналогично формату Extended Density Format (XDF) фирмы IBM, который использовался в дистрибутивах OS/2.

Сохранность информации

Одной из главных проблем, связанных с использованием дискет, является их недолговечность. Магнитный диск может относительно легко размагнититься от воздействия металлических намагниченных поверхностей, природных магнитов, электромагнитных полей вблизи высокочастотных приборов, что делает хранение информации на дискетах достаточно ненадёжным: даже однократная перевозка дискеты с информацией в общественном транспорте на электрическом ходу (троллейбус, трамвай, метрополитен) может привести к потере информации на дискете.

Наиболее уязвимым элементом конструкции дискеты является жестяной или пластиковый кожух, закрывающий собственно гибкий диск: его края могут отгибаться, что приводит к застреванию дискеты в дисководе, возвращающая кожух в исходное положение пружина может смещаться, в результате кожух дискеты отделяется от корпуса и больше не возвращается в исходное положение. Сам пластиковый корпус дискеты не служит достаточной защитой гибкого диска от механических повреждений (например, при падении дискеты на пол), которые выводят магнитный носитель из строя. В щели между корпусом дискеты и кожухом может проникать пыль.

Современное положение

Внешний дисковод (для 3,5″ дискет) с USB-интерфейсом

По состоянию на 2016 год массовое использование дискет практически прекращено. В настоящее время абсолютное большинство выпускающихся материнских плат для настольных персональных компьютеров вообще не содержат разъёма для подключения дисковода. Из ноутбуков встроенные дисководы полностью исчезли в середине 2000-х годов.

В настоящее время дискеты продолжают использоваться в устаревшем промышленном, измерительном, медицинском, музыкальном оборудовании. Для подобных применений существуют аппаратные эмуляторы дисковода, позволяющие заменить дискеты картами памяти и USB флеш-накопителями.

Электронные ключи при работе с системами «Банк-клиент», обеспечивающие электронную цифровую подпись документа, ранее распространявшиеся на дискетах, всё чаще выпускаются в виде USB флеш-накопителя с функцией биометрической защиты.

При установке драйверов для оборудования (например, RAID-массива) в современных ОС семейства MS Windows (Windows Vista, Windows Server 2008 R2, Windows 7) также может применяться флеш-накопитель.

В случае отсутствия дисководов, подключаемых в соответствующий «классический» интерфейсный разъём на материнской плате, можно воспользоваться внешним устройством, имеющим USB или SCSI интерфейс.

С выходом из употребления дискет некоторые пользователи использовали звук двигателей дисководов для исполнения музыки.

Производство

По состоянию на 2016 год дискеты 3.5″ 2HD 1.44 Мб выпускаются фирмами Verbatim, TDK, EMTEC, Imation на единственном тайваньском заводе.

Примечания

  1. 1 2 3 Воройский, 2003, с. 258.
  2. Гибкие магнитные диски сверхвысокой плотности: «В специальной литературе рассматриваемые диски называются гибкими оптическими, или флоптическими. … Запись информации производится на ферромагнитный слой (как и на обычные гибкие диски) с помощью головок записи/чтения…. количество дорожек увеличено до 755 … ширина дорожек значительно уменьшилась. Здесь вступает в действие вторая часть технологии — оптический механизм позиционирования головок. Для точного позиционирования головок используется лазерный датчик. … В конце 1996 г. на рынке появились флоптические диски LS-120 ёмкостью 120 Мбайт»
  3. Ещё год, ещё Comdex (продолжение…) Архивная копия от 1 февраля 2014 на Wayback Machine // «Компьютерра» № 2 от 13 января 1997 года: » накопитель LS-120. … и современные 120-мегабайтные носители, при использовании которых магнитная головка наводится на дорожку с помощью лазера, отслеживающего кольцевую маркировку, нанесенную на диск.»
  4. История компании IBM
  5. Floppy Disks: It’s been a great 30 years. Дата обращения 9 января 2015.
  6. Toshiba floppy disk factory reborn as vegetable farm (недоступная ссылка). Дата обращения 9 января 2015. Архивировано 26 декабря 2014 года.
  7. Toshiba’s old floppy disk factory grows lettuce that doesn’t need washing. Дата обращения 9 января 2015.
  8. Veraltete Technik: Das Pentagon speichert auf Floppy Disks. Проверено 16 января 2017.
  9. Floppy disk variants (англ.)
  10. History of the floppy disk (англ.)
  11. List of floppy disk formats (англ.)
  12. Чем меньше коэрцитивная сила, тем выше чувствительность диска к магнитному поля для записи на диск
  13. Определяет влияние соседних дорожек
  14. Дискеты и дисководы — Amiga wikipedia. amiwiki.spb.ru. Дата обращения 15 декабря 2018.
  15. Amiga Drive Compatibility. jope.fi. Дата обращения 15 декабря 2018.
  16. Андрей Письменный. Восемь дисководов исполняют гимн СССР, темы из Doom и «Доктора Кто». «Компьютерра» (18 мая 2012). Архивировано 18 мая 2012 года.
  17. Floppy Disk 3.5″ 1.44MB IBM Formatted 10pk (недоступная ссылка). Дата обращения 9 января 2015. Архивировано 9 января 2015 года.
  18. Дискеты 3,5″ 1,4Mb Imation , 10 шт в картонной коробке (i12881). Дата обращения 9 января 2015.
  19. Дискеты 3,5′ 1,4Mb. Дата обращения 9 января 2015.

FILED UNDER : Железо

Submit a Comment

Must be required * marked fields.

:*
:*