admin / 07.06.2018

Core i7 6500u обзор

Intel Core i7 – 6500U низко вольтажный процессор с двумя физическими ядрами ULV выполнен на базе архитектуры Skylake. В массовое производство SoC поступил в сентябре 2015 года. Комплектуются данным CPU в основном ультрабуки, а также обычных ноутбуков (с недавних пор компания интел ликвидировала класс – ультрабук). Процессор содержит два физически ядра которые благодаря технологии Hyper-Threading могут работать в 4 потока с тактовой частотой 2,5 ГГц, а в режиме Turbo Boost – 3,1 ГГц, чип содержит интегрированное графическое ядро intel HD Graphics 520 GPU и двухканальный DDR4-2133 / DDR3L-1600 контроллер памяти. Процессор Intel Core i7 – 6500U производится по 14 нанометровому технологическому процессу с использованием FinFET транзисторов.

Архитектура Intel Core i7 – 6500U

Skylake пришел на смену Haswell и приносит новую микроархитектуру что позволило улучшить TDP от 4,5 до 45 Вт, а также дополнительный прирост производительности за счет технологии Hyper -Threading. В общем, производительность за такт для процессоров Skylake выросла всего лишь от 5% до 10% (по сравнению с Haswell), и менее 5 % (по сравнению с Broadwell), что очень мало как для новой архитектуры ( “Tock”).

Производительность Intel Core i7 – 6500U

В соответствии с указанными тактовыми частотами и улучшенной архитектурой, ядро процессора i7-6500U должно соответствовать ядру процессора i5-4300M (Haswell, 37 Вт) или ядру i7-5600U (Broadwell, 15 Вт). Таким образом, процессор имеет достаточную мощность для офисных и мультимедийных целей, а также более требовательных приложений и многозадачности, например для не CPU требовательных игор.

Интегрированная графика Intel Core i7 – 6500U

В процессор интегрированно графическое ядро HD Graphics 520, которое представляет собой “GT2” версию Skylake GPU (Intel Gen. 9). Видео ядро способно работать на частоте 300 – 1050 МГц, и обладает 24-мя исполнительными блоками, которые также называются EUs.
Поизводительность встроенной графики intel HD Graphics 520 сопоставима с мобильной дискретной графикой nVidia GeForce 820M.

Енергоефективность

Енергоефективность процессора Intel Core i7 – 6500U составляет TDP 15 Вт (включая CPU, GPU и контроллер памяти), процессор лучше всего подходит для небольших ноутбуков и ультрабуков (11-дюймов – 13 дюймов). При требовании TDP может быть снижена до 7,5 Вт (CTDP вниз), в таком случае падает тепловыделение и производительность процессора что позволяет использовать пасивное охлаждение.

Название процессора Intel Core i7 6500U
Серия Core i7
Кодовое название Skylake
Рабочая частота 2500 – 3100 MHz
Level 1 Cache 128 KB
Level 2 Cache 512 KB
Level 3 Cache 4096 KB
Количество ядер / потоков 2 / 4
Max. Power (TDP = Thermal Design Power) 15 Ват
Технология производства 14 нм
Макс. температура 100 °C
Размер кристала 99 mm2
Сокет (Socket) BGA
GPU Intel HD Graphics 520 (300 – 1050 MHz)
Доп. возможности Двух канальный контроллер памяти DDR3L-1600/DDR4-2133, Hyper Threading, AVX, AVX2, Quick Sync, Virtualization, AES-NI
Hardware Virtualization VT-x, VT-d
Дата производства 09/01/2015
Стартовая цена $393

Тест производительности процессора Intel core i7 – 6500U

Процессоры Kaby Lake и Skylake тоже могут работать в платах на чипсете для Coffee Lake

Несовместимость одинаковых по процессорному разъёму процессоров Intel поколения Coffee Lake и Kaby Lake (Skylake) представляется разработчиками как вынужденная мера, поскольку в линейке Coffee Lake вышли 6-ядерные модели с более высокими требованиями к питанию. Тем самым благо в виде первых массовых настольных 6-ядерных моделей обернулось горечью от невозможности поэтапной модернизации компьютера, когда Coffee Lake нельзя установить в старые платы на чипсетах 100-й и 200-й серий, а процессоры Kaby Lake и Skylake не будут работать в новых платах на чипсетах 300-й серии.

О том, что это не совсем так можно было подозревать ещё до выхода Coffee Lake, хотя 100-% совместимости действительно можно было бы не ждать. И потом, для работы процессоров в нетипичных условиях должна быть реализована поддержка в BIOS материнских плат. Проще всего это сделать производителям материнских плат, но они связаны договорами с компанией Intel, и в этом отношении политика микропроцессорного гиганта становится всё жёстче и жёстче. Энтузиастам остаётся одно — брать дело в свои руки и искать возможность запустить Coffee Lake на старых платах, а Skylake и Kaby Lake на новых.

Сегодня мы уже сообщали, что процессор Coffee Lake прижился в одной из плат на основе Intel Z170. Обратный эксперимент также проделан и показал, если так можно сказать, более широкую обратную совместимость чипсета Z370 со старыми процессорами Skylake и Kaby Lake. Правда, BIOS также пришлось перепрошивать, и это потребовало определённых усилий с использованием внешних программаторов. Зато старые процессоры смогли работать в материнских платах ASUS PRIME Z370-A, MSI Z370-A PRO, MSI Z370 Gaming M5, MSI Z370 Gaming Plus, Gigabyte Z370 AORUS Gaming 7, Gigabyte Z370 HD3, ASRock Z370 Taichi и Colorful iGame Z370 Vulcan. Этими моделями дело не ограничится, хотя в отдельных случаях может пострадать функциональность платы (чипсета). Хотелось бы дождаться аналогичной инициативы со стороны кого-то из производителей, у которого хватит смелости обойти запрет компании Intel.

Вместо предисловия

Честно говоря, с тестами серверных процессоров у нас с самого начала как-то не заладилось. На предварительную подготовку и получение доступа к серверам суммарно был потрачен не один месяц. И… уже во время тестирования пришла «замечательная» весть о четвёртом варианте уязвимости класса Spectre/Meltdown. Правда, грядущие патчи по умолчанию будут отключены, так как уже имеющаяся защита от первых версий этих же уязвимостей значительно усложняет использование новой. Мало того, в тот момент, когда пишутся эти строки, в интернете уже гуляют слухи об очередной уязвимости в CPU Intel.

Совсем коротко и на понятном языке про Spectre и Meltdown рассказано в этом материале. Опять-таки не вдаваясь в подробности, напомним, что этот класс уязвимостей позволяет при некоторых манипуляциях на современных процессорах получить несанкционированный доступ к данным. Несмотря на то, что в «дикой природе» так до сих пор и не было выявлено ни одного массового зловреда, использующего такой тип атак, это не значит, что защищаться от них не следует.

Базовую защиту обеспечивают программные патчи в ядре, которые уже почти полгода как получили все популярные ОС. Однако для полной защиты требуется наличие обновления в первую очередь микрокода процессоров. Побочный эффект от этого выражается в том, что появляются дополнительные проверки и задержки в работе CPU. А это уже выливается в снижение производительности в той или иной степени. При этом эффект для CPU неодинаков: более современные модели за счёт новых инструкций и особенностей страдают от таких патчей в меньшей степени.

Для серверов, которые чаще всего заняты обработкой важных данных, эти патчи жизненно необходимы. Так что с начала этого года мы вынуждены жить с различными заплатками против уязвимостей. В каком-то смысле это новая эпоха, потому что и все последующие модели CPU будут содержать изменения на аппаратном уровне, направленные на избавление от уязвимостей в механизмах предсказания ветвлений. Пока что таковых нет, но уже сейчас есть смысл посмотреть на производительность CPU после патчей прошивок и микрокода, а также обновить методику тестирования серверных компонентов.

Конфигурация

Итак, что нам нужно? Две как можно более близкие конфигурации с процессорами разных поколений, которые, в свою очередь, тоже должны быть по возможности близкими. Что у нас получилось? Точнее, к чему нам дали доступ? К двум двухсокетным материнским платам производства той же Intel: S2600WT и S2600WF. Обе платы имели последний стабильный на момент написания материала вариант прошивки с патчами — для микрокода — против Spectre/Meltdown v.1/2/3, но не варианта 4, увы (см. скриншоты ниже). Обе машины получили 64 Гбайт RDMIMM DRR4-2133 ECC: по 8 модулей Samsung M393A1G40DB0-CPB. Да, Skylake-сервер поддерживает до 6 каналов памяти DDR4-2666, но фактически работал он именно в четырёхканальном режиме, как и Broadwell-сервер, — по два модуля на канал. Это было сделано умышленно.

В качестве системного диска для ОС — стабильная версия Debian 9.4 — использовался SATA SSD DC S3500 ёмкостью 300 Гбайт. Впрочем, тесты проводились на новеньких NVMe-накопителях Intel SSD DC P4510 ёмкостью 2 и 8 Тбайт — /var на обеих машинах был смонтирован именно на них. Все диски имели файловую систему ext4. Заодно с тестом CPU были сделаны и небольшие тесты этих накопителей. Наконец, несколько слов о CPU. Нам достались Intel Xeon E5-2690 v4 и Xeon Gold 6140. Они находятся примерно в одной ценовой категории: почти $2 100 и $2 450 соответственно. При этом различаются они всё же существенно. На стороне Skylake большее число ядер (18 против 14) и чуть более высокая турбочастота (3,7 ГГц против 3,5 ГГц). В пользу Broadwell играет в полтора раза более объёмный L3-кеш (35 Мбайт против 24,75 Мбайт) и повышенная базовая частота (2,6 ГГц против 2,3 ГГц).

TDP и предельная рабочая температура обоих CPU практически одинаковы: 135/140 Вт и 89/91 °C. Впрочем, это как раз указывает на то, что описанные выше различия лишь поверхностны. Гораздо больше изменений приходится на архитектуру. Даже техпроцесс, обозначенный как «14 нм», не совсем один тот же. Особенности строения и работы обоих поколений Intel Xeon описаны в соответствующих материалах: Broadwell-EP и Skylake-SP. Отдельно останавливаться мы на них здесь не будем. Отметим лишь, что для обеих систем CPU scaling governor (кажется, более адекватного перевода, чем «регулятор производительности», для этого термина нет) был переведён в режим performance — для серверов это допустимый и разумный вариант регулировки мощности процессоров.

Тестирование

Для тестирования использовался пакет Phoronix Test Suite (PTS) версии 7.8 в виде deb-пакета, взятого с официального сайта. Да, для получения абсолютных показателей он не очень годится, так как все бенчмарки компилируются непосредственно на тестируемых машинах и параметры сборки порой далеки от оптимальных — для некоторых тестов, например, сделан сознательный отказ от современных инструкций типа AVX в угоду стабильности. Примерно то же самое можно ожидать и от бинарных сборок софта во многих дистрибутивах. Впрочем, для сравнения производительности двух и более систем PTS подходит. Кроме того, мы надеемся и далее использовать уже подобранный набор тестов для оценки серверов.

Все результаты тестов находятся в открытом доступе. ПО собрано с помощью GCC 6.3.0 и Clang 3.8.1-24. Ядро ОС содержало все актуальные на момент тестирования портированные патчи против Meltdown и Spectre v.1/2/3, плюс были установлены обновления микрокода самих CPU. В таблице приведены некоторые результаты тестов, которые успешно завершились на обеих машинах и были собраны с одинаковыми параметрами. Результаты тестирования FIO и других бенчмарков для накопителей Intel SSD DC P4510 смотрите по ссылке выше, здесь они умышленно не приведены. Впрочем, они по большей части очень схожи на обеих машинах. Кроме того, по ссылке можно также посмотреть уровень погрешности для ряда бенчмарков.

Основные тесты сведены в одну большую таблицу. За базовый уровень (100 %) взяты показания с машины с Intel Xeon E5-2690 v4. В четвёртой колонке дано указание на то, что лучше — увеличение результата теста или уменьшение. В соответствии с этим зелёным цветом в последней колонке обозначен прирост производительности для Xeon Gold 6140, а красным её снижение или отсутствие роста. На первый взгляд всё просто замечательно, за исключением лишь некоторых бенчмарков. На глаз рост в среднем достигает где-то 40%, а нижняя граница находится около 15%. Если провалы и есть, то они находятся на уровне менее 10%. В общем, всё вроде бы укладывается в прошлогодние обещания: «ПО, оптимизированное для Broadwell, без перекомпиляции в среднем получит +10 % скорости на ядрах Skylake-SP».

Однако на практике нужно учесть ещё кое-что. Разница в четыре ядра между процессорами фактически выливается в 16 потоков (2 × ), что уже существенно. Поэтому мы выбрали и пересчитали прирост на ядро из всей пачки бенчмарков для тех, которые теоретически хорошо масштабируются и могут реально задействовать все ядра. Но теоретически именно потому, что, к примеру, результат CLOMP указывает на не самое лучшее распараллеливание с OpenMP. С другой стороны, некоторые результаты (рендер + БД) не просто удивляют, а даже настораживают — настолько велик и общий прирост, и прирост на ядро.

На десерт у нас есть ещё кое-что. Помните первые тесты IBM POWER9? Так вот, этот же набор тестов был сделан и на вверенных нам машинах. Собственно, среди результатов есть смысл смотреть только на показатели AMD EPYC 7601 (32 ядра/64 потока, 2,2/3,2 ГГц, 64 Мбайт L3-кеш, TDP 180 Вт, 14 нм, ≈ $4 000), но и то очень аккуратно, потому что с нашими тестовыми машинами совпадение есть только в объёме/наборе RAM. Однако частота модулей заметно выше, система работает на Intel Optane, а данных о патчах прошивки против Spectre/Meltdown нет. И это уж не говоря о более свежих компиляторе и ядре.

Вместо заключения

На помощь можно призвать Капитана Очевидность и отметить, что новые процессоры (м-м, почти новые, им уж скоро год всё-таки) лучше старых — быстрее и производительнее при тех же цене и TDP. С учётом того, что в дата-центрах и других крупных инсталляциях средний срок жизни CPU составляет от трёх-четырёх лет, прирост будет ещё более заметен — даже без должной оптимизации под новую архитектуру и увеличившееся число потоков. После заплаток разница между поколениями меньше не стала, так что годичной давности обещания Intel относительно производительности всё ещё в силе. Увы, сравнить результаты с показателями систем без заплаток не удалось.

Так что полученные результаты пока что не слишком ценны сами по себе, но мы надеемся в дальнейшем расширить список протестированных систем с тем же набором бенчмарков. В связи с этим очень интересно, что будет с грядущими Xeon — получат ли они реальную аппаратную защиту, или Intel обойдётся мягкими мерами вроде предварительного накладывания заплаток на микрокод, пусть и ценой снижения итоговой производительности? И да, здесь мы совершенно обошли стороной другие нововведения в Skylake-SP, касающиеся в первую очередь ввода-вывода и ускорения некоторых операций. Но об этом как-нибудь в другой раз. Впрочем, если у вас есть пожелания по включению в набор каких-то других тестов, не стесняйтесь написать об этом в комментариях.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Процессоры Intel Kaby Lake G с графикой Vega M: сроки выпуска, спецификации и производительность


Команды Intel и AMD объединились, чтобы немного осадить «зелёных» из Nvidia с их мобильными видеокартами, и обещают нам тонкие и мощные игровые ноутбуки. То есть новые процессоры Intel Kaby Lake G, усиленные графикой AMD Vega M, по производительности могут опережать карты GTX 1060 Max-Q, потребляя при этом меньше энергии. Звучит впечатляюще, не так ли?
Как показала январская выставка CES (Consumer Electronics Show), взрывное событие должно произойти в этом году; как раз во время начала открытой пресс-конференции Nvidia – этого большого технологического шоу, Intel объявила о своих планах прервать гегемонию Nvidia в массовом секторе мобильного игрового рынка.

Информация к размышлению

Сроки выпуска Intel Kaby Lake G
Машины, оснащенные новыми процессорами Intel с графикой Radeon, могут появиться в конце марта. Мини-компьютеры Intel NUC Hades Canyon будут отгружены в конце марта.
Спецификации Intel Kaby Lake G
Чипы Kaby Lake G будут выпускаться с двумя основными вариантами графики Vega M: первый – с 20 вычислительными блоками и 1280 ядрами GCN, и второй – с 24 вычислительными блоками и 1536 ядрами GCN. В обоих вариантах предусмотрено 4 ГБ памяти HBM2. Все компоненты CPU, включая Core i5, будут четырехъядерными и восьмипоточными.
Архитектура Intel Kaby Lake G
В чипах серии G используются CPU с относительно старой архитектурой Kaby Lake на базе 14-нм техпроцесса, оснащенные модифицированным графическим чипом Radeon Vega, подключенным через PCIe 3.0. Чип Vega M подключается к памяти HBM2 через внутреннее соединение Intel EMIB.

Производительность Intel Kaby Lake G
Intel обещает лучшую, чем у карт Nvidia, производительность в играх с обоими вариантами графики – Vega M GH и Vega M GL, при этом по результатам игровых тестов чипы с 24 вычислительными блоками превосходят GTX 1060 Max-Q на 10%, а чипы с 20 вычислительными блоками в некоторых тестах опережают GTX 1050 на 40%.
Новые процессоры Kaby Lake G обещают нам массовые игровые ноутбуки, для которых не будет необходимости дополнительно приобретать тяжелые и сильно греющиеся дискретные видеокарты Nvidia или AMD. Одна только экономия места дает возможность делать ноутбуки с более емкими батареями, более эффективными и менее шумными вентиляторами, или просто более компактные игровые ноутбуки со сниженным энергопотреблением.
Появление смешанного чипа с CPU Intel Core и графикой Radeon Vega показывает, насколько сильно обе компании хотят вытеснить Nvidia с прибыльного рынка игровых ноутбуков. За последние три года рынок игровых ноутбуков вырос в общей сложности на 42%, и это в мире, где Apple старается доказать вам, что компьютер свое отжил, и все остальные говорят, что уже никто больше не покупает настольные ПК.
Несмотря на острые в прошлом отношения, AMD и Intel по ряду противоречий достигли компромисса – чисто денежный интерес может оказаться хорошим посредником – поскольку, как знает любой знаток Total War, враг моего врага – мой друг. Или поставщик встроенной графики на заказ.

Сроки выпуска Intel Kaby Lake G


После предварительного анонса в январе 2018 г. (еще до CES), мы не рассчитывали увидеть ноутбуки, раскручивающие новые гибридные чипы Intel/AMD, до весны этого года. В общем, мы полагали, что конец марта – это очень оптимистичный срок начала выпуска для любых машин, где могут применяться процессоры Kaby Lake G / Vega M.
У Intel есть собственный мини-компьютер NUC Hades Canyon, оснащенный графикой Vega M GH, который они собираются выпустить на рынок в конце марта, и мы сомневаемся, что найдется много производителей ноутбуков, которые могли бы опередить Intel по части заготовок с графикой Vega M. Хотя мы знаем, что Dell и HP точно планируют выпускать системы с новыми чипами.
Когда мы наконец сможем пощупать руками живые ноутбуки с графикой Vega M GH – зависит от конкретных производителей. Intel с определенностью говорит только о мощности 100 Вт применительно к настольному мини-компьютеру NUC, но мы уже почти не надеемся увидеть, как все 1536 ядер GCN будут работать в компактном игровом ноутбуке, способном на разрешение 1080p и частоту кадров 60 fps.

Спецификации Intel Kaby Lake G


На этом рисунке показана часть нового процессора Intel от AMD – довольно интересная штука. Как вы сами можете догадаться, говорить про компоненты CPU скучно – там везде используется страшно унылая архитектура Kaby Lake с 14-нм техпроцессом. Для этого, вероятно, требуется соответствующее настроение + знание внутренней кухни, но меня все больше и больше утомляют попытки Intel в каждом релизе представлять одну и ту же архитектуру как что-то новое.

Это подразумевает всё те же четыре ядра и восемь потоков по всем направлениям, без каких-либо сногсшибательных шестиядерных решений, которые приведут в восторг мобильный рынок, когда они в конце концов выпустят серию Intel Coffee Lake-H где-то через год.
Тем не менее, некоторый интерес представляет чип Intel Core i5 с поддержкой HyperThreading и собственными восемью потоками. Это отличает его от большинства процессоров Core i5, а единственная разница между ним и Core i7 состоит в том, что он имеет немного более низкую тактовую частоту и меньший общий объем кэша.
Но, как я уже сказал, мы сейчас рассматриваем действительно интересный графический чип Vega M, который предлагается в двух различных вариантах: Vega M GH и Vega M GL, что означает соответственно высокий (Vega M Graphics High) и низкий (Vega M Graphics Low) уровень графики.
Графический компонент топ-уровня Vega M GH в серии G используется только в чипах с Core i7 и имеет полный комплект из 24 вычислительных блоков (CU, Compute Unit). Каждый CU включает в себя 64 ядра GCN, то есть в общей сложности GPU содержит 1536 ядер. Частоты этого GPU – и базовая, и Turbo – естественно, намного ниже, чем у аналогичных графических процессоров Vega для настольных ПК, но, тем не менее, выход на тактовую частоту 1200 МГц – это очень приличный результат для чипа с пониженным энергопотреблением, дающего при этом 100 Вт TDP.

Процессоры Vega M GL включают в себя 20 CU, то есть содержат в общей сложности 1280 ядер GCN. Для сравнения – это на 256 ядер больше, чем в графическом процессоре RX 560 Polaris. Поскольку эти чипы дают 65 Вт TDP, значения их тактовых частот, естественно, будут ниже – в режиме Turbo они выходят на отметку только 1 ГГц.
Кроме того, похоже, судя по спецификациям, что чипы GL, предлагающие производительность 32 пикселя за такт, имеют вдвое меньше блоков растровых операций (ROP, Render OutPut unit) по сравнению с чипами GH, которые предлагают 64 пикселя за такт. Этот показатель имеет наибольшее значение, когда речь идет о постобработке (post-processing) и сглаживании (anti-aliasing) – возможно, эти настройки надо будет немного снизить, если вы будете играть на машине с графическим процессором Vega M GL.
Что касается памяти, то все чипы серии G имеют 4 ГБ памяти поколения HBM2 (High-Bandwidth Memory – память с высокой пропускной способностью), которая подключена непосредственно к GPU.
Также в серии G присутствует один разблокированный чип – Core i7 8809G, который недавно появился в списке разблокированных процессоров Intel, так что тут нет ничего удивительного.

Это значит, что с Core i7 8809G вы, счастливчики, сможете пользоваться обоими приложениями для оверклокинга – WattMan от AMD и XTU от Intel. А так как разблокирован весь чип, то вы получаете доступ к продвинутым настройкам CPU, GPU и памяти HBM2. Однако, остальные четыре процессора серии G полностью заблокированы. Возможно, это говорит о том, что 8809G останется переходным чипом для настольных мини-ПК, таких как NUC Hades Canyon, и не пойдет в ноутбуки серии G с графикой высокого уровня Vega M GH.

Два чипа – i7 8809G и 8709G – предназначены для мини-компьютеров NUC Hades Canyon, которые Джон Десридж (John Deatherage), директор по маркетингу направления Intel NUC, на недавнем брифинге назвал “машиной виртуальной реальности Intel”. Теперь вы понимаете, почему эти компьютеры получили наименование Hades Canyon (каньон Аида), раз их директор по маркетингу носит имя DEATHeRAGE, располагающее к стремлению в подземное царство теней…
Это будут удивительно мощные компактные машины, однако заявление, что в части графики они смогут удовлетворять всем требованиям, которые предъявляет VR-гейминг, будет некоторым преувеличением. Я понимаю, что планка требований к графическому процессору у NUC несколько снижена, но думаю, что вам пришлось бы изрядно потрудиться, чтобы запустить на NUC Fallout 4 VR в соответствии со всеми требованиями к игровому процессу.

Архитектура Intel Kaby Lake G


Основы архитектуры новых чипов Kaby Lake G с графикой Vega M хорошо известны уже сейчас, за исключением сложностей, связанных со встроенным мостом EMIB (Embedded Multi-die Interconnect Bridge).
Архитектуре CPU Kaby Lake уже больше года – в январе прошлого года мы представляли ее в результатах наших тестов. К тому же она практически идентична 14-нм архитектуре Skylake, которая вышла в 2015 г. Но, как я уже сказал, это в порядке вещей…
По правде говоря, архитектура GPU AMD Vega с момента своего выхода в прошлом году тоже успела стать вполне понятной. Ее ключевые особенности – это технология RPM (Rapid Packed Math) и контроллер HBCC (High Bandwidth Cache Controller). RPM по сути позволяет графическому процессору выполнять две математические инструкции за время одной, хотя и с небольшой потерей точности. Но в играх это не является проблемой, поскольку там не требуется 32-битная точность вычислений, в отличие от профессиональной обработки данных.
Компонент HBCC позволяет GPU использовать часть системной памяти в качестве расширенного фреймового буфера, что может пригодиться, когда у вас в процессоре с Vega M только 4 ГБ видеопамяти. Этот высокоскоростной контроллер памяти оказывается кстати, когда 4 ГБ памяти HBM2 не хватает. Наличие 1024-битной шины памяти предполагает высокую пропускную способность: 205 и 179 ГБ/с у чипов GH и GL соответственно.
С графическим процессором Vega вы также получаете доступ ко всем новинкам AMD в части программного обеспечения. Последнее обновление AMD Adrenalin – лучший драйвер из числа тех, которые они выпустили в обозримом прошлом. Для этой разновидности мобильных чипов отлично подходит технология Radeon Chill, позволяющая предельно минимизировать затраты энергии, и, следовательно, экономить заряд батарей во время игры. А также вы сможете пользоваться технологиями FreeSync и FreeSync 2.
Но, возможно, самое интересное в этой разработке – то, каким образом в Intel собрали все это вместе. Они целиком заказали у AMD специально модифицированный графический процессор Vega, но для подключения к нему HBM2 использовали свою собственную схему EMIB. Метод EMIB, который Intel представила в прошлом году, позволяет связывать воедино различные архитектуры и микросхемы с помощью моста с высокой пропускной способностью.

Однако они не стали применять технологию EMIB для подключения GPU Vega к CPU Intel Core. Это соединение осуществляется весьма традиционным способом — с помощью восьми линий PCIe 3.0 (PCIe 3.0 8х), в то время как другие восемь линий оставлены для подключения к CPU накопителя на базе PCIe.
Это как раз тот пункт, который AMD могла бы выполнить лучше Intel, если вспомнить их собственный вариант встроенной графики в мобильных APU Ryzen. Применение AMD собственной внутренней шины Infinity Fabric для соединения CPU и GPU в одном чипе следует считать более удачным техническим решением по сравнению с компоновкой Intel Vega M, которая все-таки по существу является простой комбинацией дискретных чипов GPU и CPU, а не высокоэффективным единым чипом. Будет ли AMD самостоятельно выпускать что-либо более масштабное, чем мобильные процессоры Ryzen? Вероятнее всего, нет – ни с таким числом ядер GCN, каким может похвастаться модифицированный GPU Vega M, ни с видеопамятью HBM2.
Но Intel скорей всего стала бы отстаивать свою схему динамического распределения питания, основанную на программном обеспечении, обращая внимание на разницу в эффективности двух разных подходов – «красной» и «голубой» команды – к использованию графики Vega в мобильных формах. Intel утверждает, что технология Dynamic Tuning почти на 20% эффективнее.
Vega также включает в себя систему подвода питания к каждому CU, которая позволяет графическому процессору выключать целые кластеры ядер GCN, если они в данный момент не используются. И, поскольку серия G базируется на мобильных компонентах Kaby Lake-H, вы также получите графику Intel HD – на те случаи, когда вам не нужна высокая производительность графики Radeon и вас устроит качественный средний уровень. Хотя я думаю, что Intel слегка преувеличивает, говоря, что серия G укомплектована “двумя изумительными графическими подсистемами.”

Производительность Intel Kaby Lake G

Нам придется характеризовать производительность чипов Kaby Lake G со слов Intel, так как реальные машины, которые могли бы продемонстрировать нам новые процессоры, пока не поступили на наши испытательные стенды. Надеемся, что к тому времени у нас будет и более широкий выбор ноутбуков AMD Ryzen Mobile для сравнительного тестирования.
И, кто знает – возможно, Nvidia также выпустит в конце марта комплектующие для ноутбуков на базе архитектуры Volta. Да, я сам в себе сомневаюсь…
Тем не менее, результаты составленной Intel подборки тестов показывают, что топовые компоненты Vega M серии G для ноутбуков способны превзойти GTX 1060 Max-Q в среднем на 10%, предлагая 60 fps на разрешении 1080p с высокими настройками. Это действительно впечатляет, даже с учетом того факта, что чипы Max-Q Design в принципе работают примерно на 10% медленнее, чем стандартные мобильные видеокарты Nvidia. Таким образом, можно говорить о том, что графика Vega M GH потенциально соответствует уровню производительности, который мы в настоящее время видим в игровых ноутбуках ценой от $1500.
А теперь представьте, сколько будут стоить ноутбуки с процессорами Kaby Lake G…

Будет ли этой производительности достаточно для того, чтобы NUC Hades Canyon с графикой Vega M GH мог реально претендовать на настоящий VR-гейминг, – надо еще посмотреть. Хоть они и называют его машиной виртуальной реальности, но вам, вероятно, придется поработать с NUC над тем, чтобы получить в VR-играх достаточно гладкий игровой процесс с приличными характеристиками, – но не затем, чтобы забыть про ланч и/или чувство собственного достоинства.
Чип с Vega GL оказался даже более удачным, если говорить о сравнении его с соответствующим компонентом от Nvidia: тесты Intel показывают, что его производительность превосходит производительность мобильного чипа Nvidia GTX 1050 на 30-40%. Понятно, что Intel демонстрирует результаты, соответствующие наиболее оптимистичному сценарию, но они все равно впечатляют.
Результаты сравнения с GTX 1050 Ti не были представлены, зато известно, что TDP графического процессора Vega M GL – 65 Вт – почти не отличается от суммарного TDP (GPU + CPU), что понятно. С графикой Vega M GL вы вряд ли получите 60fps на разрешении 1080p с высокими настройками, но даже выход на отметку 40fps будет вполне достойным результатом. Это средние показатели, но не менее интересно будет отметить минимальные значения частоты кадров и времени отрисовки одного кадра у обоих чипов Vega M серии G.

Долгие годы Intel и AMD борются за корону лидера рынка процессоров для настольных компьютеров. И вот уже много лет подряд CPU от Intel были вне конкуренции. Однако вследствие недавнего появления AMD Ryzen этот производитель вынужден был уступить свое уютное место под солнцем. Все три первые места в рейтинге процессоров для домашних ПК оказались заняты конкурентом. В рейтинге экстремальных процессоров компания Intel пока что смогла отстоять первые места, а в ее планах уже значится выпуск перспективных преемников поколений Skylake Х и Kaby Lake Х.

Kaby Lake с небольшими улучшениями

С выходом шестого поколения процессоров (Skylake) Intel попрощалась с моделью развития «тик-так». Помимо уменьшения техпроцесса и разработки новой архитектуры в качестве следующего, третьего шага цикла, разработчик вводит еще один этап — оптимизацию. Первой такой оптимизацией и является Kaby Lake, седьмое поколение процессоров Core.

Нового в процессорах линеек Pentium, Celeron, Core i3, Core i5 и Core i7 семейства Kaby Lake предлагается не так много. Самое значимое изменение по сравнению с предшественниками, оказывающее влияние не производительность, заключается лишь в увеличение тактовых частот. Но этого достаточно, чтобы в соответствующих рейтингах чипы поднялись чуть выше Skylake. Кроме того, процессор поколения Kaby Lake понадобится вам для работы с SSD-накопителями Intel Optane, оперативной памятью стандарта DDR4 на частоте 2400 МГц и для аппаратного ускорения при использовании кодека H.265. При этом вам придется раскошелиться и на материнскую плату с чипсетом 200-й серии.

Intel Core i7-7700K: топ-процессор с четырьмя ядрами

Отличная тактовая частота, плохое соотношение цены и качества

Компания Intel заботится о достижении новых рекордов в области тактовых частот и облегчает оверклокерам процесс разгона. Например, Intel Core i7-7700K даже с воздушным охлаждением легко можно перевести за отметку в 5 ГГц.

Производительность на одно ядро, как и прежде, остается важнейшим фактором для игр. Однако в обозримом будущем эта ситуация, скорее всего, изменится. Мультиядерная оптимизация постепенно распространяется за пределы рынка профессионального применения и иногда становится дополнительным преимуществом в играх от крупных издателей. Однако до тех пор, пока данный тренд не стал доминирующим, продукция Intel продолжит обеспечивать геймерам некоторое преимущество.

Совсем по-другому дела обстоят с соотношением цены и качества. Как в высококлассной среде обитания процессоров Core i7, так и в среднем классе Core i5, компания AMD предлагает существенно более доступные, но сопоставимые по производительности модели. Например, за те же деньги вместо Core i5-7600 с четырьмя ядрами и 4,1 ГГц в boost-режиме (16 место) вы можете взять AMD Ryzen R5 1600 с шестью ядрами и 3,6 ГГц в boost-режиме (3 место). Единственное исключение — это область Core i3, эквивалента для которых AMD пока еще не представила.

Процессоры Intel: тест всех моделей

В нижеприведенном рейтинге мы представляем вам актуальные процессоры от компании Intel, которые прошли через нашу испытательную лабораторию. Таким образом, вы сможете просто и легко найти всю самую важную информацию об отдельных CPU и сравнить их между собой. Следовательно, у вас есть гарантированная возможность подобрать процессор, который будет подходить вашим потребностям и соответствовать размерам кошелька.

Также мы добавили в сравнительную таблицу один из процессоров AMD Ryzen, чтобы вы могли наглядно сравнить производительность.

1. AMD Ryzen 7 1800X

Производительность CPU (100%) : 69.7
Архитектура : Summit Ridge
Кол-во ядер : 8
Кол-во потоков : 16
Максимальная частота : 4,0 ГГц
Техпроцесс : 14 нм
Общая оценка: 69.7 Соотношение цена/качество: 90

2. Intel Core i7-7700K

Производительность CPU (100%) : 66
Архитектура : Kaby Lake
Кол-во ядер : 4
Кол-во потоков : 8
Максимальная частота : 4,5 ГГц
Техпроцесс : 14 нм;
Общая оценка: 66 Соотношение цена/качество: 68

3. Intel Core i7-7700

Производительность CPU (100%) : 61.2
Архитектура : Kaby Lake
Кол-во ядер : 4
Кол-во потоков : 8
Максимальная частота : 4,2 ГГц
Техпроцесс : 14 нм;
Общая оценка: 61.2 Соотношение цена/качество: 65

4. Intel Core i7-4790K

Производительность CPU (100%) : 58.8
Архитектура : Haswell
Кол-во ядер : 4
Кол-во потоков : 8
Максимальная частота : 4,4 ГГц
Техпроцесс : 22 нм;
Общая оценка: 58.8 Соотношение цена/качество: 61

5. Intel Core i7-6700K

Производительность CPU (100%) : 57.9
Архитектура : Skylake
Кол-во ядер : 4
Кол-во потоков : 8
Максимальная частота : 4,2 ГГц
Техпроцесс : 14 нм;
Общая оценка: 57.9 Соотношение цена/качество: 60

FILED UNDER : Железо

Submit a Comment

Must be required * marked fields.

:*
:*