admin / 30.07.2018

PCI express совместимость

VJ Железо

При смене одной только видеокарты обязательно нужно учитывать, что новые модели могут просто не подходить к вашей материнской плате, так как существует не просто несколько разных типов слотов расширения, но несколько их версий (применительно к AGP, и в скором времени — к PCI Express). Если вы не уверены в своих знаниях по этой теме, внимательно ознакомьтесь с разделом.

Как мы уже отметили выше, видеокарта вставляется в специальный разъем расширения на системной плате компьютера, через этот слот видеочип обменивается информацией с центральным процессором системы. На системных платах чаще всего есть слоты расширения одного-двух (реже трёх) разных типов, отличающихся пропускной способностью, параметрами электропитания и другими характеристиками, и не все из них подходят для установки видеокарт. Очень важно знать имеющиеся в системе разъемы и покупать только ту видеокарту, которая им соответствует. Разные разъемы расширения несовместимы физически и логически, и видеокарта, предназначенная для одного типа, в другой не вставится и работать не будет.

Мы не будем касаться ISA и VESA Local Bus слотов расширения и соответствующих им видеокарт, так как они безнадежно устарели, и не каждый специалист ныне знает о них что-то большее, чем их названия и то, что они когда-то существовали. Обойдем вниманием и слоты PCI, так как игровых видеокарт для них давно уж нет.

Современные графические процессоры используют один из двух типов интерфейса: AGP или PCI Express. Эти интерфейсы отличаются друг от друга в основном пропускной способностью, предоставляемыми возможностями для питания видеокарты, а также другими менее важными характеристиками. Теоретически, чем выше пропускная способность интерфейса, тем лучше. Но практически, разница в пропускной способности даже в несколько раз не слишком сильно влияет на производительность, и пропускная способность интерфейса крайне редко является узким местом, ограничивающим производительность.

Лишь очень малая часть современных системных плат не имеет слотов AGP или PCI Express, единственной возможностью расширения для них является интерфейс PCI, видеокарты для которого весьма редки и попросту не подходят для домашнего компьютера. Рассмотрим два современных интерфейса подробнее, именно эти слоты вам нужно искать на своих системных платах. Смотрите фотографии и сравнивайте.

AGP



AGP (Accelerated Graphics Port или Advanced Graphics Port) — это высокоскоростной интерфейс, основанный на спецификации PCI, но созданный специально для соединения видеокарт и системных плат. Шина AGP лучше подходит для видеоадаптеров по сравнению с PCI (не Express!) потому, что она предоставляет прямую связь между центральным процессором и видеочипом, а также некоторые другие возможности, увеличивающие производительность в некоторых случаях, например, GART — возможность чтения текстур напрямую из оперативной памяти, без их копирования в видеопамять; более высокую тактовую частоту, упрощенные протоколы передачи данных и др.

В отличие от универсальной шины PCI, AGP используется только для видеокарт. Интерфейс имеет несколько версий, последняя из них — AGP 8x с пропускной способностью 2.1 Гб/с, что в 8 раз больше начального стандарта AGP с параметрами 32-бит и 66 МГц. Новых системных плат с AGP уже не выпускают, они окончательно уступили рынок решениям с интерфейсом PCI Express, но AGP до сих пор имеет широкое распространение и дает достаточную пропускную способность даже для новых видеочипов.

Спецификации AGP появились в 1997 году, тогда Intel выпустил первую версию описания, включающую две скорости: 1x и 2x. Во второй версии (2.0) появился AGP 4x, а в 3.0 — 8x. Рассмотрим все варианты подробнее:
AGP 1x — это 32-битный канал, работающий на частоте 66 МГц, с пропускной способностью 266 Мбайт/с, что в два раза выше полосы PCI (133 Мбайт/с, 33 МГц и 32-бит).
AGP 2x — 32-битный канал, работающий с удвоенной пропускной способностью 533 Мбайт/с на той же частоте 66 МГц за счет передачи данных по двум фронтам, аналогично DDR памяти (только для направления «к видеокарте»).
AGP 4x — такой же 32-битный канал, работающий на 66 МГц, но в результате дальнейших ухищрений была достигнута учетверенная «эффективная» частота 266 МГц, с максимальной пропускной способностью более 1 ГБ/с.
AGP 8x — дополнительные изменения в этой модификации позволили получить пропускную способность уже до 2.1 ГБ/с.

Видеокарты с интерфейсом AGP и соответствующие слоты на системных платах совместимы в определенных пределах. Видеокарты, рассчитанные на 1.5 В, не работают в 3.3 В слотах, и наоборот. Но существуют универсальные разъемы, которые поддерживают оба типа плат. Некоторые новые видеокарты из последних AGP серий, такие как NVIDIA GeForce 6 серии и ATI X800, имеют специальные ключи, не позволяющие установить их в старые системные платы без поддержки 1.5 В, а последние AGP карты с поддержкой 3.3 В — это NVIDIA GeForce FX 5×00 и часть из ATI RADEON 9×00, кроме основанных на R360.

При апгрейде старой AGP системы обязательно нужно учитывать возможную несовместимость разных версий слотов AGP. Бывает, что никаких проблем не возникает, но перед модернизацией видеосистемы стоит ознакомиться со статьей:

Краткая выжимка из этой статьи: новые видеокарты в старые системные платы можно пробовать вставлять без особого риска, в крайнем случае, система просто не заработает, в отличие от попытки установки старых видеокарт на новую материнскую плату, что может иметь печальные последствия. Для установки новых видеоплат на устаревшую системную, имеющую разъема AGP 1.0, нужно, чтобы новая видеокарта имела универсальный разъем AGP 1.0/2.0:


Но если новая видеокарта имеет разъем AGP 2.0, то заставить ее работать на старой системе не получится.

AGP 3.0 видеокарты имеют такой же разъем, как показан выше, и их можно устанавливать на материнские платы со слотом AGP 2.0. Существуют и видеокарты AGP 3.0 с универсальным разъемом, которые можно устанавливать в том числе и на системную плату с портом AGP 1.0.

Несмотря на то, что версии AGP действительно сильно отличаются друг от друга по теоретическим показателям, таким, как пропускная способность, более старый и медленный интерфейс тормозить работу видеокарты будет не сильно, разница в производительности в играх при режимах AGP 4x и AGP 8x составляет лишь несколько процентов, а то и еще меньше:
NVIDIA GeForce4 Ti 4200 with AGP8x (NV28) и GeForce4 MX 440 with AGP8x (NV18)

Посмотрите — теоретическая разница в пропускной способности отличается в два раза, но практические результаты тестов показывают отсутствие значительного преимущества AGP 8x решений по сравнению с AGP 4x вариантами.

Нужно отметить, что в переходный период смены слотов AGP на PCI Express выходили системные платы с гибридными решениями, предоставляющими так называемые слоты AGP Express. Эти слоты зачастую размещались совместно с PCI Express x16 слотом, но они не являются полноценными AGP слотами и работают на скорости обычных PCI слотов, что дает очень низкую скорость, позволяющую разве что переждать время перехода на полноценное PCI Express решение.


Про подобный продукт можно прочитать в статье:
Тестирование AGP-Express в исполнении ECS

Вообще же, видеокарты, рассчитанные на морально и физически устаревший слот AGP, в наших статьях не рассматриваются, поэтому мы ограничимся лишь написанным выше текстом и ссылкой на последние тесты AGP видеокарт на iXBT.com.

Последние из Могикан на базе AGP: GeForce 7800 GS, RADEON X1600 PRO, X1300

PCI Express



PCI Express (PCIe или PCI-E, не путать с PCI-X), ранее известная как Arapaho или 3GIO, отличается от PCI и AGP тем, что это последовательный, а не параллельный интерфейс, что позволило уменьшить число контактов и увеличить пропускную способность. PCIe — это лишь один из примеров перехода от параллельных шин к последовательным, вот другие примеры этого движения: HyperTransport, Serial ATA, USB и FireWire. Важное преимущество PCI Express в том, что он позволяет складывать несколько одиночных линий в один канал для увеличения пропускной способности. Многоканальность последовательного дизайна увеличивает гибкость, медленным устройствам можно выделять меньшее количество линий с малым числом контактов, а быстрым — большее.

Интерфейс PCIe пропускает данные на скорости 250 Мбайт/с на одну линию, что почти вдвое превышает возможности обычных слотов PCI. Максимально поддерживаемое слотами PCI Express количество линий — 32, что дает пропускную способность 8 ГБ/с. А PCIe слот с восемью рабочими линиями примерно сопоставим по этому параметру с быстрейшей из версий AGP —. Что еще больше впечатляет при учете возможности одновременной передачи в обоих направлениях на высокой скорости. Наиболее распространенные слоты PCI Express x1 дают пропускную способность одной линии (250 Мбайт/с) в каждом направлении, а PCI Express x16, который применяется для видеокарт, и в котором сочетается 16 линий, обеспечивает пропускную способность до 4 ГБ/с в каждом направлении.

Несмотря на то, что соединение между двумя PCIe устройствами иногда собирается из нескольких линий, все устройства поддерживают одиночную линию, как минимум, но опционально могут работать с большим их количеством. Физически, карты расширения PCIe входят и работают нормально в любых слотах с равным или большим количеством линий, так, PCI Express x1 карта будет спокойно работать в x4 и x16 разъемах. Также, слот физически большего размера может работать с логически меньшим количеством линий (например, на вид обычный x16 разъем, но разведены лишь 8 линий). В любом из приведенных вариантов, PCIe сам выберет максимально возможный режим, и будет нормально работать.

Чаще всего для видеоадаптеров используются разъемы x16, но есть платы и с x1 разъемами. А большая часть системных плат с двумя слотами PCI Express x16, работает в режиме x8 для создания SLI и CrossFire систем. Физически другие варианты слотов, такие как x4, для видеокарт не используются. Напоминаю, что всё это относится только к физическому уровню, попадаются и системные платы с физическими PCI-E x16 разъемами, но в реальности с разведенными 8, 4 или даже 1 каналами. И любые видеокарты, рассчитанные на 16 каналов, работать в таких слотах будут, но с меньшей производительностью. Кстати, на фотографии выше показаны слоты x16, x4 и x1, а для сравнения оставлен и PCI (снизу).

Хотя разница в играх получается не такой уж и большой. Вот, например, обзор двух системных плат на нашем сайте, в котором исследуется разница в скорости трехмерных игр на двух системных платах, пара тестовых видеокарт в которых работает в режимах 8 каналов и 1 канала соответственно:
http://www.ixbt.com/mainboard/foxconn/foxconn-mcp61vm2ma-rs2h-mcp61sm2ma-ers2h.shtml

Интересующее нас сравнение — в конце статьи, обратите внимание на две последние таблицы. Как видите, разница при средних настройках весьма небольшая, но в тяжелых режимах начинает увеличиваться, причем, большая разница отмечена в случае менее мощной видеоплаты. Примите это к сведению.

PCI Express отличается не только пропускной способностью, но и новыми возможностями по энергопотреблению. Эта необходимость возникла потому, что по слоту AGP 8x (версия 3.0) можно передать не более 40 с небольшим ватт суммарно, чего уже не хватало видеокартам последних поколений, рассчитанных для AGP, на которых устанавливали по одному или двух стандартным четырехконтактным разъемам питания (NVIDIA GeForce 6800 Ultra). По разъему PCI Express можно передавать до 75 Вт, а дополнительные 75 Вт получают по стандартному шестиконтактному разъему питания (см. последний раздел этой части). В последнее время появились видеокарты с двумя такими разъемами, что в сумме дает до 225 Вт.

PCI Express 2.0

Не так давно, группой PCI-SIG, которая занимается разработкой соответствующих стандартов, были представлены основные спецификации PCI Express 2.0. Вторая версия PCIe вдвое увеличивает стандартную пропускную способность, с 2.5 Гб/с до 5 Гб/с, так что разъем x16 позволяет передавать данные на скорости до 8 ГБ/с в каждом направлении. При этом PCIe 2.0 совместим с PCIe 1.1, старые карты расширения будут нормально работать в новых системных платах, появление которых ожидается уже в 2007 году.

Спецификация PCIe 2.0 поддерживает как 2.5 Гб/с, так и 5 Гб/с скорости передачи, это сделано для обеспечения обратной совместимости с существующими PCIe 1.0 и 1.1 решениями. Обратная совместимость PCI Express 2.0 позволяет использовать прошлые решения с 2.5 Гб/с в 5.0 Гб/с слотах, которые просто будут работать на меньшей скорости. А устройство, разработанное по спецификациям версии 2.0, может поддерживать 2.5 Гб/с и/или 5 Гб/с скорости.

Основное нововведение в PCI Express 2.0 — это удвоенная до 5 Гб/с скорость, но это не единственное изменение, есть и другие нововведения для увеличения гибкости, новые механизмы для программного управления скоростью соединений и т.п. Нас больше всего интересуют изменения, связанные с электропитанием устройств, так как требования видеокарт к питанию неуклонно растут. В PCI-SIG разработали новую спецификацию для обеспечения увеличивающегося энергопотребления графических карт, она расширяет текущие возможности энергоснабжения до 225/300 Вт на видеокарту. Для поддержки этой спецификации используется новый 2×4-штырьковый разъем питания, предназначенный для обеспечения питанием будущие модели видеокарт.

PCI Express External

И уже в этом году, группа PCI-SIG, занимающаяся официальной стандартизацией решений PCI Express, объявила о принятии спецификации PCI Express External Cabling 1.0, описывающих стандарт передачи данных по внешнему интерфейсу PCI Express 1.1. Эта версия позволяет передавать данные со скоростью 2.5 Гб/с, а следующая должна увеличить пропускную способность до 5 Гб/с. В рамках стандарта представлены четыре внешних разъема: PCI Express x1, x4, x8 и x16. Старшие разъемы оснащены специальным язычком, облегчающим подключение.

Внешний вариант интерфейса PCI Express может использоваться не только для подключения внешних видеокарт, но и для внешних накопителей и других плат расширения. Максимальная рекомендованная длина кабеля при этом равна 10 метров, но её можно увеличить при помощи соединения кабелей через повторитель.

Чем это может быть полезно для видеокарт? Например, это точно может облегчить жизнь любителей ноутбуков, при работе от батарей будет использоваться маломощное встроенное видеоядро, а при подключении к настольному монитору — мощная внешняя видеокарта. Значительно облегчится апгрейд подобных видеокарт, не нужно будет вскрывать корпус ПК. Производители смогут делать совершенно новые системы охлаждения, не ограниченные особенностями карт расширения, да и с питанием должно быть меньше проблем — скорее всего, будут использоваться внешние блоки питания, рассчитанные специально на определенную видеокарту, их можно в один внешний корпус с видеокартой встроить, используя одну систему охлаждения. Должна облегчиться сборка систем на нескольких видеокартах (SLI/CrossFire). В общем, с учетом постоянного роста популярности мобильных решений, такие внешние PCI Express должны завоевать определенную популярность.

В статье мы не трогаем устаревшие интерфейсы, их характеристики действительно сильно влияли на производительность даже в старые времена. Затем производители перешли на производство видеокарт, рассчитанных на интерфейс AGP (Accelerated Graphics Port), но его первой спецификации оказалось недостаточно, AGP 1.0 в некоторых случаях мог ограничивать производительность. Поэтому в дальнейшем стандарт модифицировали, версии 2.0 (AGP 4x) и 3.0 (AGP 8x) уже достигли высоких значений пропускной способности, выше которых скорость просто не росла.

Абсолютное большинство современных видеоплат рассчитано на интерфейс PCI Express, поэтому при выборе видеокарты мы предлагаем серьезно рассматривать только его, все данные о AGP приведены для справки. Хотя производители видеокарт по своей инициативе делают карты среднего уровня для интерфейса AGP (ATI RADEON X1950 PRO, NVIDIA GeForce 7800 GS и 7600 GT) до сих пор, но все они используют специальный мост для трансляции вызовов PCI Express в AGP, а новых видеочипов с поддержкой AGP давно не существует.

Итак, новые платы используют интерфейс PCI Express x16, объединяющий скорость 16 линий PCI Express, что дает пропускную способность до 4 ГБ/с в каждом направлении, это примерно в два раза больше, по сравнению с той же характеристикой AGP 8x. Важное отличие состоит в том, что PCI Express работает с такой скоростью в каждом из направлений, поэтому в некоторых случаях PCI Express может дать преимущества по сравнению с AGP. Но чаще всего пропускной способности стандарта AGP 8x достаточно, и разницы с соответствующими картами для PCI Express просто нет, разные версии видеокарт работают примерно с одной скоростью, что на AGP, что на PCI Express. Например, RADEON 9600 XT и RADEON X600 XT, для AGP и PCI Express, соответственно.

Другое дело, что будущего у AGP давно нет, и этот интерфейс следует рассматривать только с точки зрения апгрейда, все новые системные платы поддерживают только PCI Express, наиболее производительные видеокарты с интерфейсом AGP не выпускаются, а те, что есть, труднее найти в продаже. Если речь о покупке новой платы или одновременной смене системной и видеоплаты, то просто необходимо покупать карты с интерфейсом PCI Express, он будет наиболее распространен еще несколько лет, а его следующая версия будет совместима с нынешней.

Tags: AGP , слот AGP , PCI , PCI Express , слот PCI Express , слоты расширения , слоты видео карт , видеокарты с разъемом pci express , agp 8x видеокарты , agp видеокарта , DVI , dvi разъем , pci express

В продолжении части 1.

Что нужно знать о видеокартах?

Архитектура ПК x86 существует на рынке уже более двух десятков лет, но, наверное, не все знают, что мощные графические ускорители, отвечающие в компьютере за визуализацию 2D и 3D, появились только в середине 90-х годов.

Чтобы не терять возможность модернизации, видеокарта обычно представляет собой дополнительную плату, которая вставляется в слот материнской платы вашего ПК. Самые дешёвые графические решения, от которых требуется только 2D или работа под Windows, часто интегрированы в чипсет материнской платы. Современные видеокарты могут похвастаться впечатляющим списком возможностей и спецификаций, которые год от года всё увеличиваются. Сегодня в обзорах графических ускорителей можно встретить такие термины, как HDMI, ROP, пропускная способность, пиксельные шейдеры и т.д. Но если вы ещё не стали опытным пользователем, то вся эта терминология превращается просто в кашу в голове. И чтобы её устранить, мы решили выпустить очередное руководство для начинающих пользователей, на сей раз посвящённое видеокартам. Руководство разбито на три части.

Кроме того, мы рекомендуем ознакомиться с другими статьями THG.ru, которые будут полезны для начинающих пользователей.

Выходы

Именно здесь располагаются выходы видеокарты. Обратите внимание, что слотовая панель практически каждой карты расширения доступна снаружи корпуса ПК. Поэтому на ней и располагаются все нужные входы и выходы.

После установки видеокарты в ваш ПК на задней панели корпуса можно будет обнаружить соответствующие разъёмы. Именно к ним и подключается дисплей. Многие видеокарты дают несколько (два) выходов, поэтому одновременно можно пользоваться несколькими дисплеями. Существуют разные интерфейсы дисплеев, но, в целом, их подразделяют на цифровые и аналоговые.

Компьютер — это цифровая машина, работающая с нулями и единицами. Поэтому цифровой формат для компьютера является «родным», его лучше использовать и для подключения монитора к видеокарте. Современные дисплеи прошли долгий путь развития от первых электронно-лучевых трубок (ЭЛТ). ЭЛТ-дисплей использует электронную пушку, которая выстреливает по трём типам мельчайших точек на поверхности экрана, которые, в свою очередь, начинают светиться красным, зелёным или синим цветом. ЭЛТ-мониторы по своей природе аналоговые, поэтому для них цифровой сигнал превращается в аналоговый с помощью цифро-аналогового преобразователя (ЦАП), который размещён на видеокарте. С появлением жидкокристаллических дисплеев (ЖК) потребность в ЦАП исчезла, но этот компонент всё равно присутствует на случай подключения аналоговых ЭЛТ-мониторов.

VGA-выход (D-Sub)

Разъём для подключения аналогового дисплея имеет 15 ножек и чаще всего выкрашен в голубой цвет.

Под сокращением VGA подразумевают определённое разрешение (video graphics array), то есть массив из горизонтальных и вертикальных точек (пикселей). Но в области графического «железа» VGA часто расшифровывают как графический адаптер (video graphics adapter). Соответствующий разъём называют VGA или D-Sub 15. Он предназначается для вывода аналогового сигнала, причём качество такого сигнала может отличаться от одной видеокарты к другой. Дорогие видеокарты используют качественные компоненты, поэтому дают ясную и чёткую картинку даже на высоких разрешениях.

Интерфейс VGA был стандартом до появления цифрового интерфейса DVI (Digital Visual Interface), но он популярен и до сих пор. Выходы D-Sub VGA по-прежнему используются для подключения большинства ЭЛТ-мониторов. Их также можно встретить на большинстве цифровых проекторов и даже на HDTV-телевизорах. Впрочем, для цифровых мониторов мы всё же рекомендуем использовать цифровые интерфейсы.

DVI-выход

DVI расшифровывается как Digital Video/Visual Interface.

DVI — стандартный цифровой интерфейс для вывода видео на плоские ЖК-дисплеи (за исключением самых дешёвых моделей). Если ваша видеокарта не старше 2004 года, то, скорее всего, у неё есть DVI-выход. Большинство видеокарт с DVI-выходами поставляются вместе с переходниками, преобразующими сигнал с DVI на VGA/D-Sub. Так что владельцам аналоговых ЭЛТ-мониторов расстраиваться не стоит. Все современные видеокарты дают два DVI-выхода, которые позволяют подключить два дисплея и расширить возможности рабочего стола Windows. Впрочем, два дисплея поддерживает любая комбинация выводов DVI и D-Sub/VGA. Для новых дисплеев с большой диагональю и разрешением, например, для 30″ ЖК-панелей Dell и Apple, требуется выход с двухканальным DVI (Dual-Link), который поддерживает «родное» разрешение 2560×1600.

Композитный видео-выход («тюльпан»)

Композитный видео-выход «тюльпан», также известный как разъём RCA (Radio Corporation of America).

Традиционный видео-выход, повсеместно встречающийся у телевизоров и других видеоустройств, например, видеомагнитофонов. Видеосигнал проходит через единственный коаксиальный кабель. В результате мы получаем аналоговый сигнал низкого разрешения, который обычно хорош только для презентаций или игр. Вряд ли стоит читать с подключённого через «тюльпан» телевизора, поскольку качество очень низкое. Впрочем, «тюльпан» подходит для видео стандартного разрешения.

S-Video (или S-VHS)

S-Video обозначает «Super Video» или «Super VHS».

S-Video — ещё один аналоговый интерфейс видео, распространённый в телевизионной индустрии. На телевизор он даёт такой же сигнал низкого разрешения, как и «тюльпан», но цветовая информация разнесена по трём каналам, соответствующим базовым цветам. В итоге мы получаем более качественный сигнал, чем композитный по одному кабелю, но по-прежнему низкое динамическое разрешение. Хотя S-Video превосходит по качеству «тюльпан», стандарт сильно уступает компонентному выходу (Y, Pb, Pr).

Компонентный выход

Компонентные выходы слишком велики, чтобы располагать их на видеокарте, поэтому практически всегда используется переходник. Обычно переходник даёт компонентное видео (первые три разъёма) и звук (последние два разъёма).

Данный стандарт предусматривает три раздельных разъёма типа «тюльпан»: «Y», «Pb» и «Pr». Они обеспечивают раздельную цветовую информацию для HDTV (телевидение высокого разрешения). Подобный тип соединения также присутствует на многих цифровых проекторах. Хотя сигнал передаётся в аналоговой форме, его качество вполне можно сравнить с интерфейсом высокого разрешения VGA. Через компонентный интерфейс можно передавать видео высокого разрешения (HD).

HDMI

HDMI расшифровывается как «High Definition Multimedia Interface». HDMI — стандарт будущего. Это единственный интерфейс, который обеспечивает передачу видео- и аудио-информации по одному кабелю. HDMI был разработан для телевидения и кино, но и компьютерные пользователи смогут полагаться на HDMIдля просмотра видео высокого разрешения.

Выходы HDMI на видеокартах встречаются очень редко, но в будущем они должны стать более популярными. Просмотр видео высокого разрешения через компьютер может потребовать как видеокарты с выходом HDMI, так и монитора с поддержкой HDMI.

Интерфейсы видеокарт

Здесь показан интерфейс видеокарты. Сегодня это AGP или PCI Express.

Своей интерфейсной частью видеокарта вставляется в материнскую плату вашего компьютера. По сути, это слот, с помощью которого компьютер и видеокарта обмениваются информацией. Так как на материнской плате обычно присутствует слот какого-либо одного типа, то важно покупать видеокарту, которая будет ему соответствовать. Например, видеокарта PCI Express не будет работать в слоте AGP. Они не только несовместимы физически, но и используют разные протоколы передачи данных.

Самым важным аспектом интерфейса видеокарты является пропускная способность (bandwidth). Термин «пропускная способность» определяет количество информации, которое может пройти через интерфейс за отведённое время. Чем больше пропускной способности даёт интерфейс, тем быстрее может работать видеокарта. По крайней мере, в теории. Но на практике интерфейс значит не так много, как можно было бы подумать.

ISA

ISA расшифровывается как Industry Standard Architecture.

Здесь этот интерфейс присутствует только в качестве представителя давней истории, поскольку это самый старый стандарт. Видеокарты с интерфейсом ISA устарели уже очень и очень давно. Сегодня даже материнскую плату со слотом ISA найти очень трудно.

Были 8-битные и 16-битные версии карт ISA. Только последний вариант использовал полностью все контакты (см. фотографию). Карты EISA или Extended ISA позволяли увеличить пропускную способность до ширины 32 бита, кроме того, они поддерживали управление шиной (bus mastering). Но такие карты были слишком дорогие, поэтому они уступили место другим интерфейсам.

PCI

32-битная классическая шина PCI. По сей день она используется для разных стандартов карт расширения.

PCI расшифровывается как Peripheral Components Interconnect. В базовом варианте это 32-битная шина, работающая на частоте 33 МГц и обеспечивающая пропускную способность 133 Мбайт/с. Интерфейс PCI заменил ISA и её расширение VL (Vesa Local Bus) в 90-х годах, обеспечив более высокую пропускную способность. PCI является современным стандартом для большинства карт расширения, но видеокарты в своё время отошли от интерфейса PCI на стандарт AGP (а позже и на PCI Express).

Некоторые компьютеры не имеют слотов AGP или PCI Express для модернизации графической подсистемы. Единственной возможностью для них остаётся интерфейс PCI, но видеокарты для него встречаются редко, стоят дорого, да и их производительность оставляет желать лучшего.

PCI-X

PCI-X расшифровывается как «Peripheral Component Interconnect — Extended», то есть перед нами 64-битная шина с пропускной способностью до 4266 Мбайт/с в зависимости от частоты. PCI-X (не путать с PCI Express!) — это первая скоростная модернизация шины PCI Express, но при этом она получила ряд функций, полезных в серверном пространстве. Шина PCI-X не слишком часто встречается в обычных ПК, а видеокарты PCI-X очень редки. Можно установить карту PCI-X в обычный слот PCI, если он поддерживает последнюю версию стандарта (PCI 2.2 или выше), но со стандартом PCI Express PCI-X не совместим.

Интерфейс AGP: Accelerated Graphics Port.

AGP — интерфейс с высокой пропускной способностью, специально предназначенный для видеокарт. Он базируется на спецификации PCI версии 2.1. В отличие от PCI, которая является общей шиной для нескольких устройств, интерфейс AGP выделен только для видеокарты. В результате AGP даёт многочисленные преимущества по сравнению с шиной PCI. Например, возможность прямой записи или чтения в оперативную память, демультиплексирование, упрощение протоколов передачи данных и повышение тактовых частот.

Интерфейс AGP прошёл через несколько версий, а последней стала AGP 8x со скоростью 2,1 Гбайт/с, которая в восемь раз быстрее начального стандарта AGP со скоростью 266 Мбайт/с (32 бита, 66 МГц). AGP на новых материнских платах уступает место интерфейсу PCI Express, но AGP 8x (и даже AGP 4x) всё же дают достаточную пропускную способность для современных видеокарт. Все карты AGP 8x могут работать как в слотах AGP 4x, так и AGP 8x.

В отличие от ISA, PCI и AGP, стандарт PCI Express является последовательным, а не параллельным. Поэтому число контактов существенно уменьшилось. В отличие от параллельных шин, нужная пропускная способность доступна для каждого устройства. В то время как, например, для PCI пропускная способность разделяется между использующимися картами.

PCI Express позволяет сочетать несколько одиночных линий для увеличения пропускной способности. Слоты PCI Express x1 короткие и маленькие, при этом они дают суммарную скорость 250 Мбайт/с в обоих направлениях (на устройство и от него). PCI Express x16 (16 линий) даёт пропускную способность 4 Гбайт/с в одном направлении или 8 Гбайт/с в сумме. Меньшие варианты слотов PCI Express (x8, x4, x1) для графики не используются. Следует отметить, что механически слот может соответствовать x16 линиям, но логически к нему может быть подведено их меньшее количество. Существует много материнских плат, у которых два слота PCI Express x16 могут работать в режиме x8, что позволяет установить две видеокарты (SLI или CrossFire).

Хотя увеличение пропускной способности — улучшение приятное, индустрия столкнулась с другим препятствием: энергопотреблением. Интерфейс AGP 3.0 (AGP 8x) способен дать питание не больше 41,8 Вт (6 A по линии 3,3 В, 2 A по 5 В, 1 A по 12 В = 41,8 Вт и дополнительные 1,24 Вт по дополнительной линии 3,3 В на 0,375 A). Поэтому видеокарты обзавелись одним 4-контактным гнездом питания (например, ATi Radeon X850 XT PE) или даже двумя (nVidia GeForce 6800 Ultra).

Добавляя 4-контактные разъёмы, производители смогли продлить жизнь интерфейса AGP, поскольку лини дают 6,5 A или 110,5 Вт (12 В + 5 В или 17 В на 6,5 А = 110,5 Вт). В целом же, интерфейс PCI Express стал всё же более простым решением, поскольку он даёт 75 Вт через разъём x16 и дополнительные 75 Вт через 6-контактное гнездо питания, то есть 150 Вт в сумме. PCI Express позволил снять опасения по поводу будущих требований по пропускной способности и энергопотреблению.

Охлаждение

Видеокарты могут потреблять (и, соответственно, выделять) столько же энергии, сколько 150-Вт лампочка. Подобное количество тепла, выделяемое с поверхности одного кремниевого чипа, может легко сжечь кристалл. Поэтому тепло следует своевременно отводить с помощью стабильных и мощных кулеров. Без систем охлаждения графический процессор или память могут перегреться, что приведёт к «повисанию» компьютера, а в худшем случае даже к выходу видеокарты из строя.

Охлаждение может осуществляться как пассивно с помощью теплопроводящих материалов и радиаторов, так и активно, если работает вентилятор. Но в последнем случае придётся довольствоваться повышенным уровнем шума.

Радиаторы

Под словом «радиатор» (heatsink) обычно понимают пассивное охлаждение. Радиатор понижает температуру чипа, к которому он подключён, благодаря отводу тепла и повышению площади теплообмена с воздухом. Для этой цели радиаторы обычно используют рёбра. Их можно найти на графических процессорах, а также на чипах памяти.

Тепловые трубки

Видеокарты с пассивным охлаждением часто используют тепловые трубки. Эта модель Radeon X1600 от Asus оснащена двумя тепловыми трубками, передающими тепло на радиатор на обратной стороне карты.

Чем больше поверхность радиатора, тем лучше будет отвод тепла (часто с помощью вентилятора). Но иногда непосредственно на самом чипе сложно установить большой радиатор из-за ограниченного свободного места. Некоторые чипы настолько компактны, что громоздкий вентилятор не будет правильно работать из-за слишком малой контактной площади. В таких случаях помогают тепловые трубки, поскольку они значительно увеличивают теплопередачу от нагреваемого участка к радиатору. К чипу прикладывается пластина из материала с высокой теплопроводностью. А уже к ней прикрепляется тепловая трубка, которая отводит тепло к радиатору на другом своём конце. И там уже тепло легко можно рассеять.

Тепловые трубки позволяют подсоединять к небольшим устройствам крупные системы охлаждения, обеспечивающие хороший отвод тепла даже от компактных компонентов. Включая графические процессоры (GPU) и центральные процессоры (CPU).

Сегодня на рынке можно найти немало кулеров процессоров с тепловыми трубками, но эта технология постепенно распространяется и на кулеры видеокарт.

Кулеры (радиатор + вентилятор)

Вентилятор в середине видеокарты сразу же указывает на активное охлаждение, поскольку здесь есть движущиеся части.

В большинстве случаев кулер видеокарты представляет собой радиатор с прикреплённым вентилятором, который продувает воздух вдоль поверхности радиатора, таким образом отводя тепло. Кулеры видеокарт чаще всего охлаждают графический процессор, поскольку это самый горячий компонент видеокарты. Сегодня на рынке можно найти немало кулеров для видеокарт, которые можно установить вместо штатных вариантов. Часто кулеры видеокарты называют VGA-кулеры.

Но VGA-кулеры зачастую охлаждают не только графический процессор, но и чипы видеопамяти.

Однослотовые кулеры

Хороший однослотовый кулер. Он закрывает как графический процессор, так и чипы памяти. Но кулер и видеокарта вписываются в один слот ПК.

Если VGA-кулер достаточно компактный и не заходит в область соседнего слота, то видеокарта не будет мешать другим картам расширения. Такие кулеры называют однослотовыми.

Двухслотовые кулеры

Если VGA-кулер большой и не позволяет установить другую карту в соседний слот, то его называют двухслотовым. Чаще всего двухслотовые кулеры выбрасывают горячий воздух через заднюю панель ПК наружу через второй слот. Такой подход не позволяет горячему воздуху накапливаться внутри корпуса ПК, повышая внутреннюю температуру. Чаще всего в подобных системах используется радиальный вентилятор, который выдувает воздух вбок, а не вниз.

Графический процессор

Графический процессор можно назвать «сердцем» видеокарты, почти так, как центральный процессор является «мозгом» компьютера. В большинстве случаев графический процессор скрыт от постороннего взгляда кулером видеокарты. Следует отметить, что графический процессор чаще всего является самым большим и горячим компонентом видеокарты.

Графический процессор — это самая важная часть видеокарты. Практически все аппаратные спецификации, будь то пиксельные конвейеры, вершинные блоки и частоты относятся к архитектуре и возможностям графического процессора. Оставшиеся же спецификации касаются видеопамяти, которая работает вместе с графическим процессором, дабы выдать максимальную производительность в таких приложениях, как игры.

Видеопамять на карте обычно располагается рядом с графическим процессором, чтобы дорожки были максимально короткими. Это нужно для того, чтобы достичь высоких тактовых частот.

Если графический процессор можно назвать «сердцем» видеокарты, то память — это источник жизненной силы. Прекрасный процессор может потерять всю свою силу из-за медленной или неэффективной памяти. И проявить себя в полной красе в паре с высокопроизводительной памятью с широкой и быстрой шиной.

Чипы памяти (обычно их бывает от двух до восьми) чаще всего располагаются на видеокарте вокруг или по одну сторону от графического процессора. Они выглядят как маленькие чёрные прямоугольники или квадраты равного размера.

Во многих случаях на чипы памяти радиаторы не устанавливаются, поэтому их легко можно заметить на видеокарте. Но иногда к чипам памяти прикрепляется радиатор, либо они закрываются общим с GPU кулером, охлаждающим как графический процессор, так и память.

Современные видеокарты, как правило, оснащаются 128, 256 или 512 Мбайт памяти, причём используется как память DDR2, так и GDDR3. Чем больше будет памяти на видеокарте, тем больше графических данных (как правило, текстур), можно сохранять локально, то есть за ними не нужно будет обращаться в память компьютера. А ведь подобные обращения — серьёзное «узкое место».

Впрочем, объём — это далеко не всё. Часто дешёвые или массовые видеокарты оснащают большим количеством памяти, чтобы они быстрее продавались. Если современные модели видеокарт используют шину памяти 128 или 256 бит шириной, то некоторые дешёвые и даже средние по цене карты оснащены всего лишь 64-битной шиной. Представьте себе две видеокарты с равными частотами, одна из которых использует 128-битную шину, а вторая — 64-битную. Первая будет передавать за единицу времени в два раза больше данных, чем карта с 64-битной шиной. Современные игры требуют, чтобы рабочие данные хранились в видеопамяти. И если они не будут своевременно поступать к графическому процессору (в случае узкой шины), то он будет простаивать, а игра — ощутимо «тормозить».

Если вам придётся выбирать между двумя видеокартами, которые различаются тактовыми частотами, объёмом памяти и шириной шины, то всегда выбирайте меньший объём с более широкой шиной. Конечно, если вы получите при этом быструю память и/или скоростной графический процессор. Это того стоит. Мы не будем вдаваться в детали, но в играх вы получите превосходные результаты.

Что такое шина PCI Express?

В далеких 2000-х, когда состоялся переход с устаревающего стандарта PCI (расш. — взаимосвязь периферийных компонентов) на PCI Express, у последнего было одно огромное преимущество: вместо последовательной шины, которой и была PCI, использовалась двухточечная шина доступа. Это означало, что каждый отдельный порт PCI и установленные в него карты, могли в полной мере использовать максимальную пропускную способность не мешая друг другу, как это происходило при подключении к PCI. В те времена количество периферийных устройств, вставляемых в карты расширения, было предостаточно. Сетевые карты, аудио карты, ТВ-тюнеры и так далее — все требовали достаточное количество ресурсов ПК. Но в отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, если рассматривать в общем, является пакетной сетью с топологией типа звезда.

PCI Express x16, PCI Express x1 и PCI на одной плате

С точки зрения непрофессионала, представьте свой настольный ПК в качестве небольшого магазина с одним, двумя продавцами. Старый стандарт PCI был как гастроном: все ожидали в одной очереди, чтобы их обслужили, испытывая проблемы со скоростью обслуживания с ограничением в лице одного продавца за прилавком. PCI-E больше похож на гипермаркет: каждый покупатель движется за продуктами по своему индивидуальному маршруту, а на кассе сразу несколько кассиров принимают заказ.

Очевидно, что гипермаркет по скорости обслуживания выигрывает в несколько раз у обычного магазина, благодаря тому, что магазин не может себе позволить пропускную способность больше чем один продавец с одной кассой.

Также и с выделенными полосами передачи данных для каждой карты расширения или встроенными компонентами материнской платы.

Влияние количества линий на пропускную способность

Теперь, чтобы расширить нашу метафору с магазином и гипермаркетом, представьте, что каждый отдел гипремаркета имеет своих кассиров, зарезервированных только для них. Вот тут-то и возникает идея нескольких полос передачи данных.

PCI-E прошел множество изменений со времени своего создания. В настоящее время новые материнские платы обычно используют уже 3 версию стандарта, причем более быстрая 4 версия становится все более распространенной, а версия 5 ожидается в 2019 году. Но разные версии используют одни и те же физические соединения, и эти соединения могут быть выполнены в четырех основных размерах : x1, x4, x8 и x16. (x32-порты существуют, но крайне редко встречаются на материнских платах обычных компьютерах).

Различные физические размеры портов PCI-Express позволяют четко разделить их по количеству одновременных соединений с материнской платой: чем больше порт физически, тем больше максимальных подключений он способен передать на карту или обратно. Эти соединения еще называют линиями. Одну линию можно представить как дорожку, состоящею из двух сигнальных пар: одна для отправки данных, а другая для приема.

Различные версии стандарта PCI-E позволяют использовать разные скорости на каждой полосе. Но, вообще говоря, чем больше полос находится на одном PCI-E-порту, тем быстрее данные могут перетекать между периферийной и остальной частью компьютера.

Возвращаясь к нашей метафоре: если речь идёт об одном продавце в магазине, то полоса x1 и будет этим единственным продавцом, обслуживающим одного клиента. У магазина с 4-мя кассирами — уже 4 линии х4. И так далее можно расписать кассиров по количеству линий, умножая на 2.

Различные карты PCI Express

Типы устройств, использующих PCI Express x2, x4, x8, x12, x16 и x32

Для версии PCI Express 3.0 общая максимальная скорость передачи данных составляет 8 ГТ/с, В реальности же скорость для версии PCI-E 3 чуть меньше одного гигабайта в секунду на одну полосу.

Таким образом, устройство, использующее порт PCI-E x1, например, маломощная звуковая карта или Wi-Fi-антенна смогут передавать данные с максимальной скоростью в 1 Гбит/с.

Карта, которая физически подходит в более крупный слот — x4 или x8, например, карта расширения USB 3.0, сможет передавать данные в четыре или восемь раз быстрее соответственно.

Скорость передачи портов PCI-E x16 теоретически ограничивается максимальной полосой пропуская в размере около 15 Гбит/с. Этого более чем достаточно в 2017 года для всех современных графических видеокарт, разработанных NVIDIA и AMD.

Большинство дискретных видеокарт используют слот PCI-E x16

Протокол PCI Express 4.0 позволяет использовать уже 16 ГТ/с, а PCI Express 5.0 будет задействовать 32 ГТ/с.

Но в настоящее время не существует компонентов, которые смогли бы использовать такое количество полос с максимальной пропускной способностью. Современные топовые графические карты обычно используют x16 стандарта PCI Express 3.0. Нет смысла использовать те же полосы и для сетевой карты, которая на порту x16 будет использовать только одну линию, так как порт Ethernet способен передавать данные только до одного гигабита в секунду (что, около одной восьмой пропускной способности одной PCI-E полосы — помните: восемь бит в одном байте).

На рынке можно найти твердотельные накопители PCI-E, которые поддерживают порт x4, но они, похоже, скоро будут вытеснены быстро развивающимся новым стандартом M.2. для твердотельных накопителей, которые также могут использовать шину PCI-E. Высококачественные сетевые карты и оборудование для энтузиастов, такие как RAID-контроллеры, используют сочетание форматов x4 и x8.

Размеры портов и линий PCI-E могут различаться

Это одна из наиболее запутанных задач по PCI-E: порт может быть выполнен размером в форм-факторе x16, но иметь недостаточное количество полос для пропуска данных, например, всего например x4. Это связано с тем, что даже если PCI-E может нести на себе неограниченное количество отдельных соединений, все же существует практический предел пропускной способности полосы пропускания чипсета. Более дешевые материнские платы с более бюджетными чипсетами могут иметь только один слот x8, даже если этот слот может физически разместить карту форм-фактора x16.

Кроме того, материнские платы, ориентированные на геймеров, включают до четырех полных слотов PCI-E с x16 и столько же линий для максимальной пропускной способности.

Очевидно, это может вызывать проблемы. Если материнская плата имеет два слота размером x16, но один из них имеет только полосы x4, то подключение новой графической карты снизит производительность первой аж на 75%. Это, конечно, только теоретический результат. Архитектура материнских плат такова, что Вы не увидите резкого снижения производительности.

Правильная конфигурация двух графических видео карт должна задействовать именно два слота x16, если Вы хотите максимального комфорта от тандема двух видеокарт. Выяснить сколько линий на Вашей материнской плате имеет тот или иной слот поможет руководство на оф. сайте производителя.

Иногда производители даже помечают на текстолите материнской платы рядом со слотом количество линий

Нужно знать, что более короткая карта x1 или x4 может физически вписаться в более длинный слот x8 или x16. Конфигурация контактов электрических контактов делает это возможным. Естественно, если карта физически больше, чем слот, то вставить ее не получится.

Поэтому помните, при покупке карт расширения или обновления текущих необходимо всегда помнить как размер слота PCI Express, так и количество необходимых полос.

ПК-Дайджест

Шина PCI Express уже очень давно используется в современных ПК, и присутствует практически в каждом стационарном ПК. Обычно в нее подключаются, видеокарты, а также различные звуковые карты, скоростные накопители данных. Но сегодня речь пойдет именно о шине PCI Express x16, внешний вид которой изображен на превью к этому материалу (красный разъем с обрамлением).

Такой разъем присутствует на всех материнских платах в том или или ином виде, может быть любого цвета, но чаще черного или синего, а также в более дорогих моделях может оснащаться подсветкой и обрамляться алюминиевыми вставками.

С каждым новым поколением материнских плат, процессоров и чипсетов разрабатываются и новые спецификации на разъемы PCI Express, самым новым на сегодняшний день является PCI Express 4.0, характеристики которого уже известны и доступны разработчикам материнских плат. То есть в следующем году уже можно будет ждать новые материнские платы с этим интерфейсом. Технологический прогресс это конечно хорошо, но давайте разберемся в чем отличие в каждом поколении таких разъемах.

Так как звуковые карты и остальная переферия может работать в любом типе порта и любой версии то в данной статье мы такие вещи рассматривать не будем. А рассмотрим совместимость видеокарт и версий PCI Express.

Для начала определимся, что видеокарты нужно устанавливать только в PCI Express x16 и при этом в самый верхний разъем, т.е. котоырый ближе всего к процессору. Да, через специальные адаптеры можно установить видеокарту в PCI Express x1 или x4, и она даже будет работать, но из за серьезных ограничений пропускной способности x1 или x4, видеокарта будет работать очень медленно практически в любой современной игре.

Различные версии разъемов PCI Express

Каждые несколько лет производители выпускают новую версию разъема PCI Express, каждая вервия в 2 раза быстрее предыдущей. Наглядно это можно представить графиком ниже:

По вертикали расположена пропускная способоность шины, а по горизонтали год выпуска. В настоящее время в большинстве материнских плат установлены интерфейсы PCI Express 2.0 и PCI Express 3.0.

Эти интерфейсы имеют обрантую совместимость, т.е. видеокарта с интерфейсом PCI Express 2.0 заработает на материнской плате с PCI Express 3.0 и PCI Express 1.0, но во втором случае ее производительность упреться в потолок пропускной способности PCI Express 1.0.

Тоже самое можно скахать и про материнские платы, если на материской плате установлен PCI Express 3.0, то на ней заработает любая видеокарта с интерфейсом такипм же или ниже.

В теории все это звучит конечно очень красиво, обратная совместимость и все прочее, но на практике как обычно бывают проблемы…

Часто бывают случа, что например видеокарта с PCI Express 3.0 не запускалась на материских платах с PCI Express 2.0 или PCI Express 1.0. Тоже самое в обратную сторону бывает и с материнскими платами. От таких случаях никт оне застрахован, и узнать вы это сможете только после тестирования конкретно вашей материнской платы и видеокарты.

Чтобы было понятнее ответим на некоторые вопросы пользователей

Совместимость стандартов AGP ? установка современных видеокарт на старые системные платы

В последнее время в конференциях появилось огромное количество вопросов по стандарту AGP, и, в частности, по совместимости видеокарт и материнских плат, поддерживающих разные версии этого стандарта. Эта статья представляет собой попытку рассказать об этом интерфейсе, и дать ответ на интересующие многих вопросы, в частности, о совместимости старых материнских плат с новыми видеокартами.

Итак, магистральный интерфейс AGP. Называть его шиной не совсем верно — на несколько слотов расширения он не был рассчитан изначально, и, хотя в спецификации AGP 3.0 есть упоминание о возможности подобных конфигураций, в железе ничего подобного так и не появилось. Этот интерфейс был разработан фирмой Intel для подключения видеокарт. При его внедрении строились грандиозные планы — предполагался почти полный отказ от локальной видеопамяти, и использование вместо нее системной. Первым шагом в этом направлении стала видеокарта Intel 740 — на ней устанавливался относительно небольшой объем памяти, использовавшийся под буфер кадра и Z-буфер, а все текстуры хранились только в системной памяти. Но путь оказался тупиковым — относительно медленная системная память не смогла соперничать с широкими и быстрыми шинами памяти видеокарт — отказ от модулей расширения позволил реализовать 128- и 256-битный доступ, а существенно более мягкие требования к отказоустойчивости отдельных ячеек памяти позволили поднять частоту даже на тех же самых микросхемах. Все дело в том, что изменение содержимого одной-единственной ячейки видеопамяти на картинку сильно повлиять не способно — изменившую цвет на одном-единственном кадре точку заметить практически невозможно, тогда как в случае системной памяти такой сбой будет иметь куда более печальные последствия. Причем повысить частоты при таких требованиях к отказоустойчивости можно очень сильно — на стоявшей у меня одно время карте RADEON VE от PowerMagic были установлены микросхемы Hynix HY5DU281622AT-K. Как несложно понять из маркировки, эти микросхемы DDR SDRAM предназначались для использования в качестве системной памяти с максимальной частотой 133MHz (266 MHz DDR). В качестве видеопамяти же они работали на номинальной частоте 166MHz (333MHz DDR), более того, не давали заметных артефактов при разгоне до частоты 210MHz (420MHz DDR). Так что текстуры соврменные карты хранят в собственной памяти, используя возможности AGP только в случае ее нехватки, а Intel 740 так и остался единственным в своем роде ускорителем, став позже основой встроенного в многие чипсеты от Intel графического ядра I752 — в этом применении его особенности пришлись как раз кстати.

1. AGP 1.0 : Как это было…

За основу интерфейса AGP 1.0 была взята шина PCI 2.1, а точнее, ее вариант PCI 32/66 — 32х разрядная шина с частотой работы 66MHz. В стандарте AGP 3.0 предусмотрено расширение разрядности до 64х бит при сохранении обратной совместимости, но пока такие конфигурации не реализованы. Электрически (но не по слоту и разводке) AGP 1.0 остался обратно совместим с PCI, но получил и кое-какие расширения:

  1. Очередь запросов. На AGP, в отличие от PCI, для передачи следующего адреса дожидаться окончания текущей передачи вовсе не обязательно — можно сделать сразу несколько запросов на чтение (запись), а затем последовательно считать (передать) данные.
  2. Частичное демультиплексирование шин адреса и данных. Реализация весьма оригинальна — в дополнение к стандартной 32х-битной мультиплексированной шине (AD) имеется 8-ми разрядная «боковая» шина адреса (SBA). Алгоритм таков: при пустой очереди запросов несколько первых передач адреса производится станадартно, по мультиплексированной шине AD, а после того, как по ней пойдут запрошенные данные, передачи следующих адресов в очередь будут производиться по шине SBA.
  3. Режим DDR для линий данных. Уже в стандарте AGP 1.0 был реализован режим 2x — передачи по линиям AD и SBA с удвоенной частотой, по фронту и спаду синхросигнала. Вопреки распостраненному заблуждению, материнских плат с поддержкой только режима 1x просто не существует — в первом чипсете с поддержкой AGP, Intel 440LX, режим 2x уже был реализован.
    Этот вариант AGP довольно быстро стал общим стандартом, VIA, SIS и ALi выпустили собственные чипсеты с поддержкой AGP.

2. AGP 2.0 : …и начинаются чудеса…

Довольно быстро развитие системной памяти привело к тому, что ее пропускная способность превысила пропускную способность AGP 1.0 даже в режиме 2x. Естественно, был разработан новый стандарт — AGP 2.0. И вот тут-то чудеса и начались… Кроме мелких усовершенствованиях режима Bus Master, оставшегося от PCI, было одно-единственное, но глобальное изменение спецификации — для реализации передач QDR (4 передачи за такт) сигнальные уровни интерфейса были снижены до 1.5V вместо 3.3V в AGP 1.0. Из-за того, что при таких частотах емкость проводников начинает играть уже существенное значение, понижение уровня логической «1» способно уменьшить потребление выходных каскадов и повысить быстродействие и стабильность. Вопреки распостраненным заблуждениям, напряжение линий, по которым подается питание для чипа и памяти (или их стабилизаторов) не изменилось — все 3 линии, VDD 3.3, VDD 5 и VDD 12 так и остались в разъеме. С 3.3V до 1.5V изменилось только VDDQ — напряжение питания для выходных каскадов чипа. Мало кто знает, но подобное решение уходит корнями еще в спецификацию PCI — изначально эта шина имела уровень логической «1» 5.0V, а в спецификации PCI 2.1 для реализации частоты 66MHz было предусмотрено его снижение до 3.3V. Проблем не возникло, во-первых, потому, что варианты PCI 32/66 и 64/66 широкого распостранения до сих пор не получили, присутствуя только в серверных решениях, а во-вторых, из-за того, что сигнальные уровни шины однозначно задаются ключами слота PCI:

Сверху — 66MHz слот, снизу — 33MHz.

Для совместимости с AGP 1.0 новых материнских плат и видеокарт были предприняты следующие действия:

  1. Первый уровень совместимости — ключи разъемов:
    Карта и разъем AGP 1.0. Сигнальные уровни — 3.3V.
    Карта и разъем AGP 1.0/2.0 (Универсальные). Сигнальные уровни настраиваются, 3.3V или 1.5V.
    Карта и разъем AGP 2.0. Сигнальные уровни — 1.5V.
    AGP Pro — не отдельный стандарт, а просто обратно совместимый слот с дополнительными цепями питания.
    Соответственно, несовместимую карту в материнскую плату воткнуть не получится. К сожалению, иногда конфигурация ключей карты или слота не соответствует действительности (см. ниже).
    Если же карта или материнская плата поддерживают несколько сигнальных уровней, то
  2. Сигнальные уровни задаются видеокартой, линией TYPEDET# — низкий уровень на ней включает режим 1.5-вольтовых сигнальных уровней.
  3. В зависимости от этого сигнала материнской платой выставляется напряжение VDDQ
  4. В зависимости от поданного VDDQ видеокарта устанавливает свои сигнальные уровни.

Пока чипсеты поддерживали режимы AGP 1.0, все было прекрасно. Но после выпуска Intel’ом чипсетов серии 845xx, не поддерживавших сигнальные уровни 3.3V, выяснилось, что не все так гладко, как казалось…

Первой, и грубейшей ошибкой производителей была установка на эти платы универсальных слотов, вместо требуемых спецификацией слотов с ключем «1.5V Only». Казалось бы — ничего страшного, VDDQ-то все равно 1.5V, карта стандарта 1.0 просто не запустится, но, как выяснилось, карты стандарта 1.0 даже при VDDQ 1.5V все равно выдавали 3.3V на входы чипсета, рассчитанные на 1.5V. Естественно, несчастный северный мост не переносил такого издевательства, и горел напрочь, после чего плату можно было смело выкидывать — оборудование для пайки BGA и запасные мосты были в наличии у очень немногих фирм. К счастью, урок из этого извлекли достаточно быстро, и ключи на слотах появились. Но проблемы не исчезли. Как выяснилось, некоторые карты, не смотря на то, что имели универсальный разъем, с AGP 4x были или совместимы частично, или несовместимы вообще. В лучшем случае карты просто не запускались или работали нестабильно, в худшем — тупо врубали трехвольтовые уровни, естественно, с последующим летальным исходом для северного моста. Встречались также, например, карты, на которых сигнальные уровни задавались джампером. Естественно, по умолчанию он стоял в положении «3.3V». К счастью, сигнал TYPEDET# на таких картах, как правило, выдает корректную информацию, так что некоторые производители, например, ASUStek, сделали на этом принципе схему защиты — при высоком уровне TYPEDET# плата не стартует. Понять, какие карты можно ставить на эти чипсеты, а какие нет можно из приведенной ниже таблицы. Для установки на эти чипсеты (а также на все последующие с поддержкой AGP 8x) карта должна поддерживать AGP 2.0:

Таблица поддержки стандартов AGP для видеокарт:
Карта вставляется в слот AGP, но использует его только как быструю PCI, без расширенных возможностей, описанных выше.
(1) У двухчиповых карт Rage MAXX проблемы с реализацией AGP 2.0.
(2) Возможно, поддержка AGP 1.0 осталась, а ключ в разъеме убран из-за большого потребления карты.
(3) На некоторых картах сигнальные уровни задаются джампером. Модификация TNT 2 Vanta LT не поддерживает AGP 2.0, но большинство карт на ней имеет универсальный разъем.
(4) У ранних ревизий карт проблемы с реализацией AGP 2.0.
(5) Заявлено — 3.0, реально — 2.0.
(6) У так и не вышедшего Xabre 80 — только 2.0.
3. AGP 3.0 — …все чудесатее и чудесатее…

Итак, и AGP 2.0 настала пора уйти в отставку — его пропускной способности опять перестало хватать. В новом стандарте 3.0 уровень логической «1» в очередной раз был изменен — уменьшен до 0.8V для режима 8x. Опорная частота интерфейса так и не изменилась, просто был введен режим ODR — передача по линиям AD и SBA с частотой, в 8 раз превышающей опорную. Естественно, добавили две новых линии — GC_AGP8X_DET# и MB_AGP8X_DET# — соответственно, определяющие поддержку AGP 3.0 у видеокарты и материнской платы. Разъем остался тем же самым — AGP 4X/1.5V Only (ох, зря, не наступили бы они опять на те же грабли при отказе от поддержки 1.5V сигнальных уровней), защита обеспечивается линией GC_AGP8X_DET# — при ее высоком уровне материнская плата с поддержкой только AGP 8x стартовать не должна. И, естественно, чудеса с сигнальными уровнями продолжились… По стандарту от Intel, и карта, и материнская плата при наличии поддержки AGP 8x поддерживать режимы с уровнями 3.3V не должна (это совсем не означает отсутствия поддержки режима 1x! Еще в стандарте AGP 2.0 были определены режимы 1x/1.5V и 2x/1.5V). На практике же, хотя материнские платы действительно эту рекомендацию выполняют, с видеокартами все далеко не так. Почти все современные видеокарты с поддержкой AGP 8x имеют и поддержку материнских плат стандарта AGP 1.0 (единственное исключение — RADEON 9600). Другое дело, что совместимость по сигнальным уровням — необходимое, а не достаточное условие работоспособности. Например, старые блоки питания чего-нибудь типа RADEON 9700 просто, как правило, не выдерживают. Но примеры работающих конфигураций есть, так что при желании любую карту, даже RADEON 9800 PRO, можно поставить на Intel 440BX, например. Но имеет ли смысл?

Таблица поддержки стандартов AGP для чипсетов:

(1) Это самые первые чипсеты с поддержкой AGP. Возможность стабильной работы новых карт целиком и полностью зависит от конкрентых материнских плат. Естественно, что от ACORP многого ждать не стоит, тогда как на ASUSTEK, например, можно запустить и RADEON 9700…

(2) Первый чипсет с AGP не от Intel. Как ни странно, серьезных аппаратных проблем не имел (не считая конкретные реализации AGP на некоторых материнских платах, но это уже не вина VIA). Крайне рекомендуется обновить BIOS перед установкой новых карт.

(3) У ранних плат, возможно, для стабильной работы режима 4x потребуется вручную подобрать AGP Driving Value.

(4) Поскольку матерных выражений редактор не одобряет, я ничего не буду говорить про реализацию AGP у этого чипсета и материнских плат на нем. Типы работающих видеокарт узнаются только подбором…

Ну и, до кучи:

Таблица всех режимов AGP:

Режим Уровень лог. «1» AGP 1.0 AGP 1.0/2.0 AGP 2.0 AGP 2.0/3.0 AGP 3.0
1x 3.3V + + +
1x 1.5V + + +
2x 3.3V + + +
2x 1.5V + + +
4x 1.5V + + +
8x 0.8V + +

Как видно из этой таблицы, в AGP 2.0 и 3.0 от режимов 1x и 2x не отказались, а просто перевели их на сигнальные уровни 1.5V. Так что не удивляйтесь, увидев вариант «1x» в настройках режима AGP на новых платах. 4. А теперь о том, что из этого следует, и как это все применить на практике

  1. Совместимость новых материнских плат и старых карт можно определить из таблиц, приведенных выше. В спорных случаях рекомендуется установить карту на материнскую плату с универсальным слотом 1.0/2.0, и проконтролировать включение режима AGP 4x с помощью RivaTuner или PowerStrip. Если карта работает в этом режиме, на новые платы ее можно ставить безбоязненно.
  2. Сжечь новую видеокарту установкой в старую материнскую плату невозможно. Единственная на данный момент карта без поддержки AGP 1.0 — RADEON 9600/PRO, но и ей это не грозит, так как в старые платы она не влезет физически.
  3. Не смотря на это, стабильность работы конфигураций «старая плата + новая видеокарта» не гарантируется.

5. Старые платы и новые видеокарты — как заставить работать?

В этом разделе собрано большинство проблем, которые могут возникнуть при установке новых видеокарт на старые материнские платы:

• Недостаточная мощность блока питания.
Проблема:
Мощность блока питания недостаточна.
Симптомы:
Уход напряжений питания из допустимых пределов.
Запуск системы только после нажатия reset.
Высокий уровень помех по питанию, и, как следствие, произвольные сбои в работе (трудноопределимо).
Решение:
Заменить БП.

• На материнской плате установлен стабилизатор на линии VDD3.3 (Сразу предупреждая возможные вопросы — на большинстве плат питающие напряжения на AGP подаются непосредственно с разъема питания системной платы. То, что в BIOS’е названо VAGP — всего-навсего VDDQ, и повышать его не стоит).
Проблема:
Из-за маломощного стабилизатора на линии VDD3.3 видеокарте не хватает питания.
Решение:
Для AT платы — установка более мощного стабилизатора (трудновыполнимо).
Для ATX платы — запитка видеокарты непосредственно от БП, как правило, отключением стабилизатора и напаиванием проводника от разъема питания. На некоторых материнских платах стабилизатор отключается джамперами.

• Неверный уровень VREFGC.
Проблема:
Наряжение VREFGC, подающееся картой стандарта 2.0 на контакты A66 и B66 закорачивается на землю платой стандарта 1.0. В стандарте 1.0 эти контакты зарезервированы. Зачем зарезервированные контакты понадобилось заземлять — тайна, сокрытая в мраке ночи. Так сделано, например, на Chaintech 6BTM
Симптомы:
Система не стартует.
Решение:
Изолировать два последних контакта в слоте.

• Маломощный стабилизатор VDDQ.
Проблема:
Неустойчивость передач по шине из-за маломощного стабилизатора VDDQ. В особо запущенных случаях — использование общего стабилизатора VDDQ для AGP и оперативной памяти. Для информации: по стандарту AGP максимальный разрешенный ток линии VDDQ — 8 ампер.
Симптомы:
Нестабильность системы, особенно в 3D-играх. Для общего стабилизатора VDDQ AGP и памяти — нестабильность проявляется при установке нескольких модулей памяти или модулей с большим количеством микросхем совместно с новой картой.
Решение:
Установить более мощный стабилизатор. Для второго случая — развязать VDDQ памяти и AGP. И то, и другое — трудновыполнимо, проще заменить плату.

• Высокая частота AGP
Проблема:
На чипсете Intel 440BX при использовании процессоров с шиной 133MHz частота AGP составляет 89MHz вместо стандартных 66.
Симптомы:
Нестабильность системы, особенно в 3D играх. Иногда система вообще не стартует.
Решение:
Установить режим 1x. При отсутствии положительного результата — СНИЗИТЬ напряжения VDDQ и VREF, но не более чем на 5% от номинала (до 3.135V и 1.5675V минимум). Учтите, что VREF=VDDQ/2, причем допустимое отклонение — не более 2%. Это особенно критично для плат ABIT и ASUStek, у которых VDDQ (и, соответственно, VREF) может быть завышено по умолчанию, что стабильности в данном случае совсем не прибавляет… Часто задают вопрос — а что же карта с поддержкой 4x или 8x какие-то 89MHz переварить не способна? Ответ прост — во-первых, в штатном режиме работы частота всех линий, кроме AD и SBA, так и осталась 66MHz, даже в стандарте 3.0. Во-вторых — хотя линии на AD и SBA в режиме 4x и выше работают с частотой, превышающей 89MHz (или 178 — для режима 2x), но работают-то они при других сигнальных уровнях…

FILED UNDER : Железо

Submit a Comment

Must be required * marked fields.

:*
:*