admin / 27.11.2018

Процессор 2.2 ггц

Нетехнические характеристики

На самом деле не все так просто… Если копнуть поглубже, то окажется, что у пятиядерных процессоров тактовая частота обычно несколько выше, чем у шестиядерных (так частота одноядерных процессоров Pentium 4 достигает 3,4 ГГц, в то время как у их двухядерных собратьев она обычно не превышает 2,5 ГГц). У пятиядерных же процессоров это соотношение обычно намного выше. Для игр же тактовая частота имеет немаловажное значение.

Объем кэша у Pentium 5 может составлять 5, 10 или 20М в зависимости от модели процессора (по 1, 2 или 4М на ядро), у Pentium 6 соответственно 6, 12 или 24М. Чем больше объем кэша, тем выше производительность например при кодировании фильмов. Так что по этой характеристике Pentium 6 выигрывает у Pentium 5.

Частота шины этих процессоров долгое время была государственной (или коммерческой) тайной… Известно было только, что если их вставить в материнскую плату, то они работают (или не работают). Сейчас по официальным данным она может составлять 2666 или 3333 M*Hz. Если умножить это значение на число ядер, то мы получим поистине впечатляющую характеристику…

Тепловыделение и играбельность

В настоящее время одной из основных характеристик современных процессоров также является играбельность… По этой характеристике оба процессора показывают неплохие результаты, но Pentium 5 выглядит все-же несколько предпочтительнее — играться с ним, без сомнения, удобнее и безопаснее.

В то же время по выделяемой мощности Pentium 6 намного превосходит Pentium 5. Если процессор пятого поколения был пригоден только для того, чтобы поджарить яичницу, то на Pentium 6 уже спокойно можно вскипятить кружку чая. Это является несомненным достоинством нового процессора.

Боксовые версии процессоров

Как известно, процессоры Intel (да и вообще все процессоры) бывают двух типов: BOX и не BOX. Отличие BOX версии в том, что вы получаете красивую коробочку с голографическим изображением человека в скафандре.

Но самое главное в том, что вместе с боксовой версией вы получаете уникальную наклейку на корпус и руководство по её использованию:

Запрещается использование прилагаемой наклейки если вы не располагаете действующей лицензией на использование товарного знака и логотипа Intel Inside. Данное действие является нарушением исключительных прав компании Intel. Наклейки могут размещаться только на компьютерных системах, которые отвечают техническим требованиям и в которых используется процессор Intel, поставляемый вместе с наклейкой.

Тот самый BOX Pentium 5. В окошко виден сам процессор.

У Pentium 5 на наклейках были изображены черепашки-ниндзя. Поэтому эти процессоры не пользовались такой популярностью. В BOX коробочках Pentium 6 лежат голографические наклейки эротического содержания. Это значительно повысило продажи новых процессоров Pentium 6, особенно боксовых версий, и особенно модификации XXX.

Основные модификации процессоров

В настоящее время наиболее распространённым модификациями Pentium 5 и Pentium 6 являются:

  • Военная. Обозначается буквой М на корпусе. Корпус процессора изготовлен из пуленепробиваемой стали толщиной от 15 до 20 мм. По желанию заказчика толщина брони может быть увеличена до 40-50 мм.
  • Северная. Обозначается буквой N. Процессоры этой модификации поставляются в чугунном корпусе, что позволяет обогревать помещение во время долгой полярной зимы.
  • Геймерская. Обозначается буквой G. В микрокод процессора встроены команды, позволяющие значительно увеличить скорость игры Тетрис. Кроме того, эти команды позволяют также улучшить искусственный интеллект игры «сапёр». По желанию заказчика Intel может предоставить программу, с помощью которой процессор можно обучить и другим видам игр.
  • Гламурная. Обозначается GL. Процессор поставляется в розовом корпусе, при выводе изображения на экран, накладывается розовый фильтр.
  • Размер имеет значение. Обозначение — XL. Корпус процессора в три раза больше самого процессора — для тех, у кого вместо монитора — плазменная панель на всю стену, настольные колонки на 500 Вт, размером 0,5 м х 0,5 х 1 м (для Pentium 5) или 600 Вт, размером 0,6 м х 0,6 х 1,2 м (для Pentium 6), вместо мышки напольный девайс, аналогичный мыши по строению.
  • Эротическая. Обозначение — XXX. Специальная модификация Pentium 6. Только с ними поставляются эротические наклейки, а сам процессор во время работы возбуждающе стонет и слегка потеет. Ведущие производители системных блоков рекомендуют при выборе этой модификации покупать прозрачные системные блоки и устанавливать кулера по сторонам процессора, так как это даст возможность смотреть показываемые на корпусе процессора эро- и порнофильмы.

Intel P6

kristal intel celeron p6

P6 — суперскалярная суперконвейерная архитектура, разработанная компанией Intel и лежащая в основе микропроцессоров Pentium Pro, Pentium II, Pentium III, Celeron и Xeon. В отличие от x86-совместимых процессоров предыдущих поколений с CISC-ядром, процессоры архитектуры P6 имеют RISC-ядро, исполняющее сложные инструкции x86 не напрямую, а предварительно декодируя их в простые внутренние микрооперации.

Первым процессором архитектуры P6 стал анонсированный 1 ноября 1995 года процессор Pentium Pro, нацеленный на рынок рабочих станций и серверов. Процессоры Pentium Pro выпускались параллельно с процессорами архитектуры P5 (Pentium и Pentium MMX), предназначенными для персональных компьютеров. 7 мая 1997 года компанией Intel был анонсирован процессор Pentium II, пришедший на смену процессорам архитектуры P5.

В 2000 году на смену архитектуре P6 на рынке настольных и серверных процессоров пришла архитектура NetBurst, однако архитектура P6 получила своё развитие в мобильных процессорах Pentium M и Core. В 2006 году на смену процессорам архитектуры NetBurst пришли процессоры семейства Core 2 Duo, архитектура которых также представляет собой развитие архитектуры P6.

Функциональные устройства

Функциональная схема процессора Pentium III на ядре Coppermine

Процессоры архитектуры P6 состоят из четырёх основных подсистем:

  • Подсистема упорядоченной предварительной обработки (англ. In-Order Front End, IOFE) — отвечает за выборку и декодирование инструкций в порядке, предусмотренном программой, и предсказывает переходы.
  • Ядро исполнения с изменением последовательности (англ. Out-of-Order Core, O2C) — отвечает за исполнение микроопераций в оптимальном порядке и организует взаимодействие исполнительных устройств.
  • Подсистема упорядоченного завершения (англ. In-Order Retirement, IOR) — выдаёт результаты исполнения в порядке, предусмотренном программой.
  • Подсистема памяти (англ. memory subsystem) — обеспечивает взаимодействие процессора с оперативной памятью.

Подсистема упорядоченной предварительной обработки

К устройствам этой подсистемы относятся:

  • Модуль и буфер предсказания переходов (Branch Target Buffer, BTB) — предсказывают переходы и хранят таблицу истории переходов. Для предсказания используются как динамический, так и статический методы. Последний используется в том случае, если динамическое предсказание невозможно (в таблице переходов отсутствует необходимая информация).
  • Декодер инструкций (Instruction Decoder) — преобразует CISC-инструкции x86 в последовательность RISC-микроопераций, исполняемых процессором. Включает два декодера простых инструкций (Simple), обрабатывающих команды, которые могут быть выполнены одной микрооперацией, и декодер сложных инструкций (Complex), обрабатывающего команды, для которых нужно несколько (до четырёх) микроопераций.
  • Планировщик последовательностей микроопераций (Microcode sequencer) — хранит последовательности микроопераций, используемые при декодировании сложных инструкций x86, требующих более четырёх микроопераций.
  • Блок вычисления адреса следующей инструкции (Next IP Unit) — вычисляет адрес инструкции (англ. instruction pointer, IP), которая должна быть обработана следующей, на основании информации о прерываниях и таблицы переходов.
  • Блок выборки инструкций (Instruction Fetch Unit, IFU) — осуществляет выборку инструкций из памяти по адресам, подготовленным блоком вычисления адреса следующей инструкции.

Процессоры на ядре Tualatin дополнительно содержат блок предвыборки инструкций (Prefetcher), который осуществляет предварительную выборку инструкций на основании таблицы переходов.

Ядро исполнения с изменением последовательности

Исполнение с изменением последовательности, при котором меняется очерёдность исполнения инструкций, так, чтобы это не приводило к изменению результата, позволяет ускорить работу за счёт более оптимального распределения запросов к вспомогательным блокам и минимизации их простоев. К устройствам организации исполнения с изменением последовательности относятся:

  • Таблица назначения регистров (Register Alias Table) — задаёт соответствие между регистрами архитектуры x86/IA32 (Intel Architecture 32-bit) и внутренними регистрами, используемыми при исполнении микроопераций.
  • Буфер переупорядочивания микроопераций (Reorder Buffer) — обеспечивает выполнение микроопераций в оптимальной с точки зрения производительности последовательности.
  • Станция-резервуар (Reservation Station) — содержит инструкции, отправляемые на исполнительные устройства.

К исполнительным устройствам ядра относятся:

  • Арифметическо-логические устройства, АЛУ (Arithmetic Logic Unit, ALU) — выполняют целочисленные операции.
  • Блок арифметики с плавающей запятой (Floating Point Unit, FPU) — выполняет операции над числами с плавающей точкой. Процессоры Pentium III и выше имеют также блок, осуществляющий исполнение инструкций SSE (SIMD FPU).
  • Блок генерации адресов (Address Generation Unit, AGU) — вычисляет адреса данных, используемых инструкциями, и формирует запросы к кешу для загрузки/выгрузки этих данных.

Подсистема упорядоченного завершения

  • Регистровый файл (Register File) — хранит результаты операций (состояние регистров IA32 для исполняемых инструкций).
  • Буфер переупорядочивания памяти (Memory Reorder Buffer) — управляет порядком записи данных в память для предотвращения записи неверных данных из-за изменения порядка выполнения инструкций.
  • Блок завершения (Retirement Unit) — выдаёт результаты исполнения инструкций в той последовательности, в которой они поступили на исполнение.

Подсистема памяти

Объём L2 процессоров архитектуры P6

Подсистема памяти осуществляет взаимодействие с оперативной памятью. К этой подсистеме относятся:

  • Кэш первого уровня для данных (Level 1 Data Cache, L1D) — память с малым временем доступа объёмом 8 (для Pentium Pro) или 16 (для более новых процессоров) килобайт, предназначенная для хранения данных.
  • Кэш первого уровня для инструкций (Level 1 Instruction Cache, L1I) — память с малым временем доступа объёмом 8 (Pentium Pro) или 16 килобайт, предназначенная для хранения инструкций.
  • Кэш второго уровня (Level 2 Cache, L2). Память с малым временем доступа объёмом 128, 256, 512, 1024 или 2048 килобайт. Ширина шины L2 составляет 64 или 256 (для процессоров на ядре Coppermine и выше) бит. Процессоры Celeron на ядре Covington кэша второго уровня не имеют.
  • Блок шинного интерфейса (Bus Interface Unit) — управляет системной шиной.

Исполнение инструкции

Конвейер процессора Pentium Pro

Конвейер состоит из 12 стадий:

  • IOFE(1—4) — определение адреса инструкции и её выборка.
  • IOFE(4—6) — декодирование.
  • IOFE7 — переименование регистров.
  • IOFE8 — запись микроопераций в станцию-резервуар.
  • O2C1 — передача микроопераций из станции-резервуара к исполнительным блокам.
  • O2C2 — исполнение микроопераций (один или несколько тактов).
  • IOR(1—2) — завершение инструкции: запись результатов в регистры.

Исполнение инструкции начинается с её выборки и декодирования. Для этого из кэш-памяти инструкций первого уровня по адресу из буфера предсказания переходов выбирается 64 байта (две строки). Из них 16 байт, начиная с адреса из блока вычисления адреса следующей инструкции, выравниваются и передаются в декодер инструкций, преобразующий инструкции x86 в микрооперации. Если инструкции соответствует одна микрооперация, декодирование проводит один из декодеров простых инструкций. Если инструкции соответствует две, три или четыре микрооперации, декодирование проводит декодер сложных инструкций. Если же инструкции соответствует большее число микроопераций, то они формируются планировщиком последовательностей микроопераций.

После декодирования инструкций производится переименование регистров, а микрооперации и данные помещаются в буфер — станцию резервирования, откуда в соответствии с оптимальным порядком исполнения и при условии определённости необходимых для их исполнения операндов направляются на исполнительные блоки (максимум 5 инструкций за такт). Статус исполнения микроопераций и его результаты хранятся в буфере переупорядочивания микроопераций, а так как результаты исполнения одних микроопераций могут служить операндами других, они также помещаются и в станцию резервирования.

По результатам исполнения микроопераций определяется их готовность к отставке (англ. retirement). В случае готовности происходит их отставка в порядке, предусмотренном программой, во время которой осуществляется обновление состояния логических регистров, а также отложенное сохранение результатов в памяти (управление порядком записи данных осуществляет буфер переупорядочивания памяти).

Особенности архитектуры

Первые процессоры архитектуры P6 в момент выхода значительно отличались от существующих процессоров. Процессор Pentium Pro отличало применение технологии динамического исполнения (изменения порядка исполнения инструкций), а также архитектура двойной независимой шины (англ. Dual Independent Bus), благодаря чему были сняты многие ограничения на пропускную способность памяти, характерные для предшественников и конкурентов. Тактовая частота первого процессора архитектуры P6 составляла 150 МГц, а последние представители этой архитектуры имели тактовую частоту 1,4 ГГц. Процессоры архитектуры P6 имели 36-разрядную шину адреса, что позволило им адресовать до 64 ГБ памяти (при этом линейное адресное пространство процесса ограничено 4 ГБ, см PAE).

Суперскалярный механизм исполнения инструкций с изменением их последовательности

Принципиальным отличием архитектуры P6 от предшественников является RISC-ядро, работающее не с инструкциями x86, а с простыми внутренними микрооперациями. Это позволяет снять множество ограничений набора команд x86, таких как нерегулярное кодирование команд, переменная длина операндов и операции целочисленных пересылок регистр-память. Кроме того, микрооперации исполняются не в той последовательности, которая предусмотрена программой, а в оптимальной с точки зрения производительности, а применение трёхконвейерной обработки позволяет исполнять несколько инструкций за один такт.

Суперконвейеризация

Процессоры архитектуры P6 имеют конвейер глубиной 12 стадий. Это позволяет достигать более высоких тактовых частот по сравнению с процессорами, имеющими более короткий конвейер при одинаковой технологии производства. Так, например, максимальная тактовая частота процессоров AMD K6 на ядре (глубина конвейера — 6 стадий, 180 нм. технология) составляет 550 МГц, а процессоры Pentium III на ядре Coppermine способны работать на частоте, превышающей 1000 МГц.

Для того, чтобы предотвратить ситуацию ожидания исполнения инструкции (и, следовательно, простоя конвейера), от результатов которого зависит выполнение или невыполнение условного перехода, в процессорах архитектуры P6 используется предсказание ветвлений. Для этого в процессорах архитектуры P6 используется сочетание статического и динамического предсказания: двухуровневый адаптивный исторический алгоритм (англ. Bimodal branch prediction) применяется в том случае, если буфер предсказания ветвлений содержит историю переходов, в противном случае применяется статический алгоритм.

Двойная независимая шина

С целью увеличения пропускной способности подсистемы памяти в процессорах архитектуры P6 применяется двойная независимая шина. В отличие от предшествующих процессоров, системная шина которых была общей для нескольких устройств, процессоры архитектуры P6 имеют две раздельные шины: Back side bus, соединяющую процессор с кэш-памятью второго уровня, и Front side bus, соединяющую процессор с северным мостом набора микросхем.

Достоинства

Процессоры архитектуры P6 имели конвейеризованный математический сопроцессор (FPU), позволивший достичь превосходства над предшественниками и конкурентами в скорости вещественночисленных вычислений. FPU процессоров архитектуры P6 оставался лучшим среди конкурентов до появления в 1999 году процессора AMD Athlon.

Кроме того, процессоры архитектуры P6 имели превосходство над конкурентами и в скорости работы с кэш-памятью второго уровня. Pentium Pro и Pentium II имели двойную независимую шину, в то время как конкурирующие процессоры (AMD K5, K6, Cyrix 6×86, M-II) — традиционную системную шину, к которой подключался, в том числе, и кэш второго уровня. С появлением процессоров Athlon, также использующих архитектуру с двойной независимой шиной, разрыв в производительности сократился, но 256-разрядная BSB процессоров Pentium III (начиная с ядра Coppermine) позволяла удерживать преимущество в скорости работы с кэш-памятью второго уровня над процессорами архитектуры K7, имевшими 64-разрядную BSB. Однако, устаревшая на тот момент системная шина процессоров архитектуры P6 в сочетании с большим объёмом кэш-памяти первого уровня у процессоров архитектуры K7 не позволяла получить преимущества в пропускной способности памяти.

Недостатки

Основным недостатком первых процессоров архитектуры P6 (Pentium Pro) была низкая производительность при работе с широко распространённым в то время 16-разрядным программным обеспечением. Это было связано с тем, что при работе с такими приложениями внеочередное исполнение инструкций было затруднено (так, например, процессор Pentium Pro не мог выполнить чтение из 32-битного регистра, если до этого была выполнена запись в его 16-битную младшую часть, а команда, выполнившая запись, не была отставлена). В процессоре Pentium II этот недостаток был исправлен, что привело к увеличению производительности при работе с 16-разрядными программами более чем на треть.

Процессоры архитектуры P6 поддерживали работу в многопроцессорных системах, однако при этом использовалась разделяемая системная шина, что позволяло упростить трассировку системных плат, однако отрицательно сказывалось на производительности подсистемы процессор—память и ограничивало максимальное количество процессоров в системе.

Примечания

  1. 1 2 3 В ожидании Willamette — история архитектуры IA-32 и как работают процессоры семейства P6
  2. Pentium M: хороший «десктопный» CPU… которого у нас не будет. IXBT.com (26 июля 2005). Дата обращения 16 августа 2008. Архивировано 24 августа 2011 года.
  3. Новое вино в старые мехи. Conroe: внук процессора Pentium III, племянник архитектуры NetBurst?. IXBT.com (9 сентября 2005). Дата обращения 16 августа 2008. Архивировано 28 января 2012 года.
  4. В отличие от процессора Celeron на ядре Coppermine-128, имеющего 4-канальный ассоциативный кэш второго уровня, у этого процессора кэш 8-канальный. См.: «Мир игровых консолей. Часть пятая», журнал Upgrade, 2007, № 28 (325), стр. 24
  5. Jon Stokes. The Pentium: An Architectural History of the World’s Most Famous Desktop Processor (Part I) (англ.). Ars Technica (11 июля 2004). Дата обращения 19 августа 2008. Архивировано 28 января 2012 года.
  6. 1 2 3 X86 архитектуры бывают разные…
  7. http://www.pcmag.ru/issues/sub_detail.php?ID=10105&SUB_PAGE=8 — Наследие RISC: Предсказание переходов.
  8. Сравнение систем на базе Super Socket-7 и Slot-1
  9. 1 2 Обзор процессора AMD Athlon 600 МГц
  10. Шина PCI (Peripheral Component Interconnect bus) — см. схему
  11. Процессоры с частотой 1000 МГц
  12. Максим Лень: «АРХИТЕКТУРА Р6: НАСЛЕДИЕ ПОКОЛЕНИЙ» (опубликована на сайте fcenter.ru 22 ноября 2000 года) — сохранённая копия (недоступная ссылка)
  13. http://www.pcmag.ru/issues/sub_detail.php?ID=9935&SUB_PAGE=3 — Pentium: история продолжается.
  14. Двухпроцессорные Socket A системы на базе чипсета AMD 760MP

Ссылки

Официальная информация

  • Официальная база данных по процессорам Pentium II (англ.)
  • Документация по процессорам Pentium II (англ.)
  • Документация по процессорам Mobile Pentium II
  • Официальная база данных по процессорам Pentium III (англ.)
  • Документация по процессорам Pentium III (англ.)
  • Документация по процессорам Mobile Pentium III (англ.)

Характеристики процессоров архитектуры P6

  • Характеристики процессоров Pentium Pro (недоступная ссылка) (англ.)
  • Характеристики процессоров Pentium II OverDrive (недоступная ссылка) (англ.)
  • Характеристики процессоров Pentium II (англ.)
  • Характеристики процессоров Pentium III (англ.)

Обзоры процессоров

  • Pentium Pro: Производительность в играх
  • Процессор Celeron
  • Обзор процессора Intel Pentium III 500 МГц
  • Mendocino: процессоры Celeron 300A и 333
  • Обзор процессоров Intel Pentium III 600E и 600EB c ядром Coppermine

Больше не
производятся
Разрядность 4 бита: Разрядность 8 бит: Разрядность 16 бит (архитектура x86-16): Разрядность 32 бита (архитектура iAPX 432): Разрядность 32 бита (архитектура x86-32/IA-32): Разрядность 32 бита (архитектура RISC): Разрядность 64 бита (архитектура x86-64/EM64T): Разрядность 64 бита (архитектура IA-64):
Актуальные Разрядность 32 бита (архитектура x86-32/IA-32): Разрядность 64 бита (архитектура x86-64):
Списки

  • 800 нм: P5
  • 600 нм: P54C
  • 350 нм: P54CS
  • P55C
  • 250 нм: Tillamook

  • 500 нм: P6
  • 350 нм: Klamath
  • 250 нм: Mendocino
  • Dixon
  • Tonga
  • Covington
  • Deschutes
  • Katmai
  • Drake
  • Tanner
  • 180 нм: Coppermine
  • Coppermine T
  • Cascades
  • 130 нм: Tualatin
  • Banias
  • 90 нм: Dothan
  • Stealey
  • 65 нм: Tolapai
  • Yonah
  • Sossaman

  • 180 нм: Willamette
  • Foster
  • 130 нм: Northwood
  • Gallatin
  • Prestonia
  • 90 нм: Tejas и Jayhawk
  • Prescott
  • Smithfield
  • Nocona
  • Irwindale
  • Cranford
  • Potomac
  • Paxville
  • 65 нм: Cedar Mill
  • Presler
  • Dempsey
  • Tulsa

  • 45 нм: Clarksfield
  • Lynnfield
  • Jasper Forest
  • Bloomfield
  • Gainestown (Nehalem-EP)
  • Beckton (Nehalem-EX)
  • 32 нм (Westmere): Arrandale
  • Clarkdale
  • Gulftown (Westmere-EP)

  • 32 нм: Sandy Bridge
  • 22 нм: Ivy Bridge

  • 22 нм: Haswell
  • 14 нм: Broadwell

  • 14 нм: Skylake
  • Kaby Lake
  • Coffee Lake
  • Whiskey Lake
  • 10 нм: Cannon Lake

  • 10 нм: Icelake
  • Tigerlake

  • 45 нм: Silverthorne
  • Diamondville
  • Pineview
  • Lincroft
  • 32 нм: Saltwell
  • 22 нм: Silvermont
  • 14 нм: Airmont
  • Goldmont

P5 P6 NetBurst Core Nehalem Bridge Haswell Skylake Icelake Bonnell Отменённые

Эта статья входит в число хороших статей русскоязычного раздела Википедии.

Сравнительное тестирование Intel Pentium 4 2,4 ГГц, AMD Athlon XP 2100+ и их предшественников

Совсем недавно мы проводили сравнение «топовых» на тот момент настольных процессоров, перешагнувших 2-гигагерцовый рубеж. К сегодняшнему дню в линейках у обеих компаний появилось по новой модели, а значит, есть повод провести очередное сравнение или исправить недочеты старого. Исследование новых моделей всегда интересно, если те различаются архитектурно, но сегодня не тот случай. Старые ядра, следующая ступень коэффициентов умножения — вот и «новые процессоры». Заслуживает внимания «обратный» факт: Athlon XP 2100+ — это последняя модель на ядре Palomino, даже не значившаяся ранее в плане выпуска и прикрывающая место до выхода нового ядра Thoroughbred.

У процессоров Intel тоже грядут изменения. Совсем скоро состоится переход на шину 533 МГц, так что имеющийся у нас экземпляр тоже в некотором роде «прощальный».

Что ж, постараемся извлечь максимальную пользу из этого тестирования. Во-первых, можно сравнить новую модель с предшествующей, и по разнице показателей в тестах оценивать масштабируемость. Во-вторых, можно ввести в строй свежие версии используемых тестов и добавить новые — благо, такие статьи обычно для промежуточного сравнения не используют. Наконец, в-третьих, всегда остаются актуальными совершенно бесполезные и совершенно беспроигрышные попытки выявить абсолютного лидера по скорости.

Для решения первой задачи добавим в пару к Intel Pentium 4 2,4 ГГц 2,2-гигагерцовую модель, а к AMD Athlon XP 2100+ — Athlon XP 2000+, и протестируем каждую пару на одном и том же своем чипсете. Опираясь на опыт уже упомянутого большого сравнения, для решения третьей задачи выберем для процессора Intel три наиболее интересные платформы, а для процессора AMD ограничимся одной — самой быстрой практически везде VIA KT333 + DDR333. Что же до обновления тестового набора — пожалуйте в главу с результатами.

Условия тестирования

Тестовый стенд:

  • Процессоры:
  • Материнские платы:
    • EPoX 4BDA2+ (BIOS от 05/02/2002) на базе i845D
    • ASUS P4T-E (версия BIOS 1005E) на базе i850
    • Abit SD7-533 (версия BIOS 7R) на базе SiS 645
    • Soltek 75DRV5 (версия BIOS T1.1) на базе VIA KT333
  • 256 МБ PC2700 DDR SDRAM DIMM Samsung, CL 2 (использовалась как DDR266 на i845D)
  • 2×256 МБ PC800 RDRAM RIMM Samsung
  • ASUS 8200 T5 Deluxe GeForce3 Ti500
  • IBM IC35L040AVER07-0, 7200 об/мин, 40 ГБ
  • CD-ROM ASUS 50x

Программное обеспечение:

Плата EPoX 4BDA2+ ASUS P4T-E Abit SD7-533 Soltek 75DRV5
Чипсет i845D (RG82845 + FW82801BA) i850 (KC82850 + FW82801BA) SiS 645 (SiS 645 + SiS 961) VIA KT333 (KT333 + VT8233A)
Поддержка процессоров Socket 478, Intel Pentium 4 Socket 462, AMD Duron, AMD Athlon, AMD Athlon XP
Память 2 DDR 4 RDRAM 3 DDR 3 DDR
Слоты расширения AGP/ 6 PCI/ CNR AGP/ 5 PCI/ CNR AGP/ 5 PCI AGP/ 5 PCI/ CNR
Порты ввода/ вывода 1 FDD, 2 COM, 1 LPT, 2 PS/2
USB 2 USB 1.1 + 1 разъем на 2 USB 1.1 2 USB 1.1 + 1 разъем на 2 USB 1.1 2 USB 1.1 + 2 разъема по 2 USB 1.1 2 USB 1.1 + 1 разъем на 2 USB 1.1
Интегрированный IDE-контроллер ATA100 ATA100 ATA100 ATA133
Внешний IDE-контроллер HighPoint HPT372
Звук AC’97 codec, Avance Logic ALC201A AC’97 codec, Avance Logic ALC201A PCI Audio, C-Media CMI8738/PCI-6ch-MX AC’97 codec, VIA VT1611A
Встроенный сетевой контроллер
I/O-контроллер Winbond W83627HF-AW Winbond W83627GF-AW Winbond W83697HF ITE IT8705F
BIOS 2 Мбит Award Modular BIOS v.6.00PG 2 Мбит Award Medallion BIOS v.6.00 2 Мбит Award Modular BIOS v.6.00PG 2 Мбит Award Modular BIOS v. 6.00PG
Форм-фактор, размеры ATX, 30,5×24,5 см ATX, 30,5×24,5 см ATX, 30,5×23 см ATX, 30,5×22,5 см

Результаты тестов

Мы уже не раз пытались сформулировать критерии оптимального процессорного теста. Конечно, идеал недостижим, но сегодня мы делаем свой первый шаг в его направлении — запускаем проект CPU RightMark (CPU.RightMark.org). За подробностями и новостями проекта отсылаем вас на его сайт, здесь же приведем краткие разъяснения, которые должны помочь вам понять суть тестового эксперимента и его инструментарий.

Итак, CPU RightMark — это тест процессора и подсистемы памяти, осуществляющий численное моделирование физических процессов и решение задач из области трехмерной графики. Говоря очень кратко, один блок программы численно решает систему дифференциальных уравнений, соответствующую моделированию в реальном времени поведения системы многих тел, другой же блок визуализирует найденные решения также в режиме реального времени. Каждый блок реализован в нескольких вариантах, оптимизированных под различные системы процессорных команд. Важно отметить, что тест не является чисто синтетическим, а написан с использованием приемов и средств программирования, типичных для задач своей области (трехмерных графических приложений).

Блок решения системы дифференциальных уравнений написан с использованием набора команд сопроцессора x87, а также имеет вариант, оптимизированный для набора SSE2 (c векторизацией цикла: две итерации цикла заменяются одной, но все операции производятся с двухэлементными векторами). Скорость работы этого блока свидетельствует о производительности связки процессор+память при выполнении математических расчетов с использованием действительных чисел двойной точности (характерно для современных научных задач: геометрических, статистических, задач моделирования).

Результаты данного подтеста показывают, что скорость работы с инструкциями x87 FPU у Athlon XP выше, однако за счет поддержки набора SSE2 (естественно, отсутствующей у Athlon XP) Pentium 4 оказывается гораздо быстрее. Подчеркнем, что в данном блоке не используются SSE-команды, поэтому результаты прогона теста в режимах с задействованием SSE опущены (они просто совпадают с соответствующими MMX/FPU и MMX/SSE2). Отметим почти идеальную масштабируемость теста по частоте CPU — здесь влияние памяти почти сведено к нулю за счет эффективного кэширования и характера работы блока с интенсивными вычислениями при сравнительно малом объеме обмена данными.

Блок визуализации в свою очередь состоит из двух частей: блока предварительной обработки сцены и блока трассировки лучей и отрисовки. Первый написан на С++ и откомпилирован с использованием набора команд сопроцессора x87. Второй написан на ассемблере и имеет несколько вариантов, оптимизированных под различные наборы инструкций: FPU+GeneralMMX, FPU+EnhancedMMX и SSE+EnhancedMMX (подобное разделение на блоки является типичным для имеющихся реализаций задач визуализации в реальном времени). Суммарная скорость работы блока визуализации свидетельствует о производительности связки процессор+память при выполнении геометрических расчетов с использованием действительных чисел одинарной точности (типично для трехмерных графических программ, оптимизированных под SSE и Enhanced MMX).

Опять же, скорость работы с инструкциями x87 FPU у Athlon XP оказывается значительно выше, однако использование при вычислениях SSE вновь выводит вперед Pentium 4, несмотря на поддержку этого набора процессорами Athlon XP. При этом по производительности на мегагерц оба процессора идут практически вровень, по суммарной же — Pentium 4 получает отрыв, соответствующий его более высокой частоте. Подчеркнем, что в данном блоке не используются SSE2-команды, поэтому результаты прогона теста в режимах с задействованием SSE2 опущены (они просто совпадают с соответствующими MMX/FPU и SSE/FPU). Отметим отличную производительность связки Pentium 4 + SiS 645, вызванную, очевидно, наибольшей скоростью доступа к памяти при малой латентности. Вообще, процесс рендеринга сопровождается довольно активной пересылкой данных, что делает вклад чипсета и типа используемой памяти в суммарную производительность системы значительным.

Суммарная производительность системы рассчитывается по формуле: Overall = 1/(1/MathSolving + 1/Rendering), так что очень значительный выигрыш Pentium 4 при использовании SSE2 в блоке расчета физической модели почти не дает прироста производительности без задействования SSE в блоке визуализатора. Зато при выполнении вычислений с помощью SSE добавка от включения SSE2 составляет вполне внушительную величину. (Отметим, что данная характеристика справедлива для конкретных выбранных условий тестирования, возможности же настройки теста позволяют задать практически любое соотношение времени просчета физической модели и визуализации (путем смены экранного разрешения или точности расчетов).) Так как Athlon XP не поддерживает набор SSE2, его производительность достаточно очевидно зависит от скорости отрисовки сцен, где он уступает Pentium 4 при использовании набора SSE, хотя и остается абсолютным чемпионом по «чистой» скорости выполнения операций при помощи только MMX и FPU. Отметим, что из протестированных чипсетов под Pentium 4 i845D смотрится чуть получше i850 (вероятно, из-за большей латентности у последнего), а чемпионом является SiS 645 по причине, указанной выше.

Довольно давно уже доступна новая версия популярного кодировщика Lame, но у нас все не было случая ее применить. В рамках подготовки данной статьи было проведено тестирование и старой, использовавшейся нами до сих пор версии 3.89, и последней официально доступной версии 3.91. Результаты совпали полностью (в пределах погрешности), что вполне согласуется с отсутствием упоминания о скоростной оптимизации кода в списке нововведений программы. (Кстати, кодировщик уже больше полугода корректно поддерживает работу со всеми доступными расширенными мультимедийными наборами команд и регистров.) Тест, как видите, превосходно масштабируется по частоте процессора, так как и здесь осуществляется эффективное предварительное кэширование данных, но остается ряд вопросов по довольно низкой производительности Pentium 4 на i850 и SiS 645. Самым разумным нам кажется предположение, что такое влияние на производительность оказывает BIOS плат: продукт от Abit мы еще не видели в деле, а вот плата от ASUS на i850 нам хорошо знакома, причем при использовании предыдущей версии прошивки (еще раз отсылаем вас к прошлому сравнительному тестированию) подобного спада не наблюдалось. Athlon XP в этом тесте по-прежнему лидер, причем для победы вполне хватает и версии 2000+.

Новая версия 5.0 кодека DivX вышла совсем недавно, но учитывая огромную популярность этого продукта, нетрудно предсказать его активное использование уже в ближайшее время, без ожидания выпуска новых релизов с исправлениями ошибок. Что ж, мы следуем в русле народных пожеланий и переходим к применению версии DivX 5.0 Pro. Мы также провели аналогичное тестирование c версией DivX 4.12, и результаты сравнения кодеков таковы: операция кодирования ускоряется весьма ощутимо — более чем на минуту, причем вне зависимости от процессора, чипсета и типа памяти. Также отметим, что DivX 5.0 Pro формирует чуть больший выходной видеофайл. К сравнению же собственно процессоров в этом тесте нам добавить нечего — все уже было сказано в прошлой статье, а вот на неплохую масштабируемость кодирования стоит обратить внимание.

В архивировании WinAce, как и при кодировании MPEG4, влияние подсистемы памяти (вследствие большого объема пересылаемых данных) примерно в два раза скрадывает эффект от увеличения частоты процессора. Athlon XP в этом тесте все еще лучше своего визави.

В архивировании WinZip отметим разве что некоторое отставание Pentium 4 на SiS 645 и полное равенство в остальных случаях.

Результаты Winstones выглядят на редкость логично и понятно, но памятуя о частых необъяснимых провалах и всплесках в этих тестах в прошлом, мы, пожалуй, воздержимся от комментариев.

Напомню, что до сих пор нам приходилось говорить решительное «не верим!» результатам Athlon XP в тесте SYSmark, так как в силу криворукости отдельных программистов версия WME 7.0, входящая в состав приложений группы Internet Content Creation этого теста, не умела определять поддержку набора инструкций SSE у Athlon XP. К счастью, мы наконец начинаем тестирование в обновленной версии бенчмарка — SYSmark 2002, в которой эта проблема решена.

Вкратце об отличиях в составе приложений тестов:

Как видите, никаких замен нет, только обновления версий. Алгоритм подсчета итоговых баллов официально известных изменений не претерпел, хотя мы бы предположили пересчет некоторых коэффициентов пропорциональности.

Интересно сравнение результатов старого и нового пакетов в офисном подтесте: во-первых, был, вероятно, введен некий корректирующий коэффициент, что привело к уменьшению показателей обеих сторон. Во-вторых, очевидно, в силу переделанного пакета Microsoft Office, Pentium 4 начал выигрывать в этом подтесте, хотя в SYSmark 2001 обе процессорные платформы шли вровень.

В создающем контент подтесте ситуация еще интереснее: за счет нормального распознавания SSE у Athlon XP в MS WME 7.1 процессор AMD прибавил, но зато в состав подтеста нового пакета входит переписанная для поддержки SSE2 версия Adobe Photoshop 6.0.1, так что Pentium 4 получает даже больший прирост.

В итоге, от сомнительного лидерства в SYSmark Pentium 4 переходит к лидерству очевидному. Обратите также внимание на то, как здорово растет производительность Pentium-систем в этом тесте с ростом частоты процессора, и на почти отсутствующий аналогичный эффект для Athlon-системы.

Рендеринг в 3DStudio MAX отлично масштабируется и обычно не демонстрирует признаков зависимости от скорости работы с памятью, так что нам остается только гадать, что же такое наворотили в последней прошивке BIOS для ASUS P4T-E инженеры компании. На диаграмме хорошо видно, что рендеринг на Athlon XP ускоряется пропорционально увеличению частоты процессора, но как раз за счет гораздо более высокой частоты Pentium 4 2,4 ГГц уходит в этом тесте в отрыв, хотя скорость еще 2,2-гигагерцовой модели была примерно равна Athlon XP 2000+.

В SPECviewperf, в общем, ничего интересного: результаты почти везде равные, с легким перевесом Pentium 4, и лишь в DX-06 заметно впереди Athlon XP. Обратите внимание на то, что скорость тестов практически не зависит от скорости процессоров.

При переходе на новый процессор Intel игровой бенчмарк делает небольшой рывок, но это не помогает ему дотянуть даже до результатов Athlon XP 2000+.

Добавление к тестовым играм Return to Castle Wolfenstein, основанной на движке Quake III, ситуацию, естественно, никак не изменило. Более того, относительные показатели в этих двух играх похожи практически один в один. Приплюсуем сюда же DroneZ, отличающуюся движком, но не характером результатов, и остается только древняя Expendable — негусто для Athlon XP… Отметим, что все игры примерно одинаково неплохо масштабируются по частоте процессора, что тоже играет на руку Intel.

Выводы

Прощание ядру Palomino не слишком удалось: нельзя сказать, что Athlon XP так уж сильно отстает от своего соперника, да и далеко не везде это отставание вообще имеет место, но тенденции налицо. С реальной ли частотой, с PR-рейтингом ли — AMD отстает от Intel по волшебным цифрам в названии процессоров, а прирост производительности на увеличение частоты (какой бы «дутой» ее ни считали у Pentium 4) в большинстве наших тестов дает преимущество в абсолютных показателях именно линейке Pentium 4. Многие приложения «узнали», наконец, про поддержку SSE в Athlon XP, что дало некоторый всплеск, но это тупик, а вот оптимизация под SSE2 еще далеко не завершена, и чем дальше — тем больше приложений будет переходить из «лагеря AMD» в «лагерь Intel».

Впрочем, пост свой Palomino оставляет все же в приличном состоянии. Отставание последней модели от имеющихся конкурентов отнюдь не катастрофическое, цена привлекательная, а мы с большим интересом будет наблюдать за попытками AMD вернуть лидерство с новым ядром.

FILED UNDER : Железо

Submit a Comment

Must be required * marked fields.

:*
:*