admin / 09.12.2018

За что отвечает чипсет на материнской плате

Зачем нужен чипсет

Главный чип на материнской плате – это процессор (ЦПУ), он отдает команды остальным устройствам, но не может сделать это напрямую. Чипсет связывает ЦПУ с остальными системами: оперативной памятью (ОЗУ), системой ввода вывода, адаптерами и контролерами периферийных устройств. Связь осуществляется через систему шин.

Общая схема чипсета материнской платы

Для соединения с разными компонентами служат разные шины:

  • c процессором – системная шина;
  • c памятью – шина памяти (Memory Bus);
  • с графическим адаптером – PCI, PCI -Express или AGP;
  • с устройствами LPT, PS/2 – шина Low Pin Count.

Чипсет контролирует только взаимодействие систем, но не вмешивается в их работу.

Чипсет определяет:

  • количество компонентов в подсистемах: возможное количество процессоров, слотов памяти, графических адаптеров, слотов расширения и портов на материнской плате.
  • частоту шины и разрядность, через которую он связывается с подсистемой;
  • можно ли повышать характеристики отдельных подсистем: тактовую частоту процессора(ов), напряжения памяти;
  • поддержку технологии подсистемами: режим сдвоенной работы видеокарт – CrossFire и SLI; режим сдвоенной работы памяти – DUAL RAM, кэширование на SSD — Smart Response Technology.
  • поддержку взаимодействия со специальными или устаревшими контроллерами: RAID, PCI,AGP.

Чипсет обеспечивает: быстродействие, расширяемость и стабильность работы в разных режимах компьютера.

Как устроен чипсет

Чипсет состоит из одной двух или более микросхем. Микросхемы называются мостами (c 1995 года). Традиционный чипсет – двухмостовый. В двухмостовом сегменте чипсет разделен на северный и южный мост.

Северный соединяется непосредственно с процессором и памятью. Южный с одной стороны – с северным через внутреннюю шину, с другой с периферийными контроллерами: слотами расширения PCI; контроллерами женских дисков SATA, IDE; контроллером Ethernet, Audio контроллером и ППЗУ (BIOS).

Схема двухмостового чипсета

В основе каждого моста – контроллер-концентратор.

У северного – это концентратор памяти, который соединен с ЦП через системную шину (FSB для процессоров Intel, HyperTransport для AMD) и обеспечивает взаимодействие ЦП и памяти. Иногда в эту связку добавлена графическая подсистема, которая связана с чипсетом через PCI-Express.

У южного – концентратор ввода-вывода. С ЦП общается через посредника – северный мост. Руководит взаимодействием ЦП и контроллеров жестких дисков (SATA, IDE, SCSI), твердотельных накопителей USB.

Двухмостовый чипсет AMD 760M

Материнская плата MSI на одночиповой конфигурации чипсета Intel H110

Более современная модель чипсета – одномостовая или одночиповая, где северный мост совмещен с процессором. За счет совмещения:

  • удешевляется производство;
  • освобождается место на материнской плате, которое занимает чип серверного моста;
  • уменьшается энергопотребление;
  • улучшается теплоотвод от чипа за счет мошной процессорной системы охлаждения.

Как узнать чипсет материнской платы

Если вам из магазина привезли компьютер, подключили и настроили и вас просто грызет любопыство, то зайдите в диспетчер устройств операционной системы откройте список системные устройства.

Строчка со словом Chipset и будет вашим чипсетом:

Название чипсета в диспетчере устройств

Если драйвера никакие не установлены, другой способ – прочесть это открыть техническую документацию к материнской плате и прочитать там. Можно прочитать и на коробке. «Имя» чипсета в полном наименовании товара идет после марки производителя:

MSI H110 VD-PRO, ASRock Fatal1ty Z170 Professional Gaming i7, MSI 970 GAMING.

Если коробка потерялась, а инструкцией и технической документацией вы растопили печь в холодную ночь, можно открыть системный блок и посмотреть на материнской плате. Название чипсета на материнской плате трудно не заметить.

Самый простой вариант — это воспользоваться утилитой AIDA64. Скачиваете программу с официального сайта, устанавливаете, запускаете с ярлыка рабочего стола.

Открываете вкладку «системная плата». Выделяете пункт «системная плата» и вуаля:

Название чипсета в Aida64

При желании можно перейти на вкладку чипсет, но программа платная и не позволит узнать полную информацию.

Бесплатная альтернатива — утилита CPU-Z.

Страница скачивания с официального сайта.

Скачайте и установите (только английский и китайский язык). Запустите утилиту с рабочего стола. Перейдите на вкладку «MainBoard»

Определение модели чипсета в CPUZ

Информация о чипсете – в строке ChipSet. О Южном мосте – в строке SouthBridge.

История

Разработан и предложен производителям компьютерных систем в 1995 году компанией Intel для замены использовавшемуся долгое время AT. Кроме самой Intel, замена начала производиться поставщиками OEM-техники (HP и т. д.), затем была подхвачена поставщиками компонентов — материнских плат и блоков питания к ним. Массовое вытеснение прежнего стандарта произошло в конце 1999 — начале 2001 года. Другие современные стандарты (microATX, flexATX, mini-ITX) обычно сохраняют основные черты ATX, изменяя лишь размеры платы и количество слотов расширения.

За время существования спецификация ATX претерпела ряд изменений, выразившихся в стандартах:

В 2003 году Intel анонсировала новый стандарт — BTX, в частности направленный на повышение эффективности охлаждения системного блока компьютера. Основной расчёт компании на замену ATX был связан со всё увеличивавшейся рассеиваемой тепловой мощностью компонентами компьютера, в первую очередь процессорами. Начавшаяся смена формата вскоре прекратилась — большая часть компьютерной индустрии отказалась от массового распространения нового формата из-за устойчивой тенденции снижения рассеиваемой компонентами компьютера мощности.

По состоянию на 2017 год, форм-фактор ATX и его производные остаются наиболее массовым и в ближайшее время его замена не планируется.

Основные отличия ATX от AT

Основная статья: AT (форм-фактор)

  • Питанием процессора управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5 и 3,3 Вольт. Хотя многие инструкции для безопасной замены компонентов настоятельно предлагают отключать шнур питания из розетки, многие блоки питания ATX имеют разрывающий выключатель на корпусе.
  • Вентилятор на задней стенке блока питания может быть дополнен (или заменен) вентилятором размером 12—14 см установленным на дно БП, что позволяет создать больший воздушный поток при меньших оборотах и, соответственно, меньшем уровне шума. Расположение элементов на материнской плате ориентировано таким образом, что радиатор процессора находится на пути воздушного потока от вентилятора блока питания. В настоящее время наблюдается тенденция разделения потоков воздуха: БП ставят вниз корпуса, приток воздуха к нему идет либо из под корпуса, либо (реже) изнутри, от видеокарты. В первоначальной спецификации АТХ вентилятор блока питания, расположенный на его дне, был приточным по отношению к корпусу и предназначался для обдува радиатора ЦП.
  • Изменился разъём питания: во избежание ошибочного подключения двух похожих друг на друга разъёмов питания в предыдущем стандарте, в стандарте ATX разъём с ключом имеет однозначное включение. Ввиду увеличения потребляемой компьютером мощности, количество контактов в ATX разъёме питания возросло сперва до 20, затем до 24; при этом появились дополнительные разъёмы: сперва 4-, а затем 8-контактные, подключающие 12 В по отдельной линии питания.
  • Изменилась задняя панель: в стандарте AT на задней панели было только отверстие для разъёма клавиатуры, платы установленные в слоты расширения и «брекеты» с разъёмами, подключающимися к материнской плате посредством гибких шлейфов, устанавливались в щелевых прорезях; в стандарте ATX разъёмы для клавиатуры (и мыши) традиционно находятся сверху, остальное место на задней панели занято прямоугольным отверстием фиксированного размера, которое производитель материнской платы может наполнять разъёмами в любом порядке. В комплекте с материнской платой идёт «заглушка» (англ. IO plate) с прорезями под разъёмы конкретной материнской платы (это позволяет использовать один и тот же корпус для материнских плат с совершенно разными наборами разъёмов). Дополнительные функции «заглушки» — уменьшение излучаемого ЭМИ и образование единого контура заземления шасси.

Блок питания

Основная статья: Компьютерный блок питания

В течение развития стандарта (с 1995 года по 2004) стандарт на разъём блока питания менялся, при этом обеспечивалась совместимость с предыдущими стандартами.

  • 20-контактный разъём ATX (вид на материнскую плату)

  • 24-контактный разъём ATX (вид на материнскую плату)

20-штырьковый разъём

Использовался до появления материнских плат с шиной PCI-Express

  • 5V VSB (standby) — «дежурное» питание 5 В, которое подаётся до включения основного питания платы
  • PW OK — питание (5 В и 3,3 В) в порядке
  • PS ON# — 14-й контакт — при замыкании на землю или на контакт PW OK (Gnd), 15-й контакт — блок питания включается, при размыкании выключается (без нагрузки включать нежелательно).
  • Gnd (ground) — «земля»

24-штырьковый разъём

Используется на платах с шиной PCI Express, для дополнительного питания которой были добавлены еще 4 контакта.

Для совместимости со старыми платами, имеющими 20-контактный разъём, у большинства блоков питания дополнительные 4 контакта отстёгиваются от основной колодки. В случае, если PCI-Express не используется, большинство материнских плат, рассчитанных на 24-контактный разъём, способны работать и с 20-контактным.

Дополнительный 4-штырьковый разъём

Дополнительный 4-контактный разъём ATX

С появлением процессоров Pentium 4 и Athlon 64 появились платы нового стандарта ATX12V 2.0, использующие для основного питания шину 12 В (а не 3,3/5 В, как ранее). Впоследствии с увеличением нагрузки на эту шину и ростом энергопотребления процессоров возникла необходимость в дополнительном 12-вольтном разъёме (ATX12V v2.2) для процессора. Этот разъём обычно располагается на плате где-то рядом с процессором.

24+4+6-штырьковый разъём

Помимо 24-штырькового разъема на материнской плате и 4-штырькового разъема может присутствовать еще один 6-штырьковый разъем, такой же, как для питания видеокарты. Обычно устанавливается при наличии у материнской платы второго и более порта PCI-E 16x, ранее для этих же целей мог использоваться 4-штырьковый Molex разъём (PATA).

24+4+4-штырьковый разъём

Помимо 24-штырькового разъема на материнской плате и 4-штырькового разъема может присутствовать еще один 4-штырьковый разъем (P8), который объединён с предыдущим и представляет собой единый 8-штырьковый разъём (стандарт EPS12V), обычно устанавливается при наличии у материнской платы поддержки более требовательных по питанию CPU, конструктивно сохраняет совместимость с 4-штырьковым разъёмом питания. На некоторых материнских платах высокого уровня таких разъёмов может быть несколько, возможны конфигурации 8-штырькового и 4-штырькового разъёмов, либо же двух 8-штырьковых разъёмов.

> См. также

  • IBM PC-совместимый компьютер
  • Материнская плата
  • Корпус компьютера
  • Аппаратное обеспечение

> Литература

  • Скотт Мюллер. Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17-е изд.. — М.: «Вильямс», 2007. — С. 252—258. — ISBN 0-7897-3404-4.

> Ссылки

Материнская плата что это — детальный обзор

Материнская плата что это — базовый элемент архитектуры современного ПК, представляет собой многоуровневую плату с предустановленным набором микросхем системной логики, служит для объединения комплектующих в единую систему (компьютер).

Логическая схема материнской платы

Любая материнская плата имеет стандартизированную общепринятую архитектуру, которая обеспечивает совместимость между множеством комплектующих.

Основным элементом логической схемы материнской платы является чипсет, от которого зависит стабильная и слаженная работа всех компонентов ПК. Чипсет содержит северный и южный мосты . Первый, отвечает за взаимодействие процессора с оперативной памятью и видеокартой. Второй, за работу шин PCI и PCI-Express, контроллеров: SATA, USB , FireWire, Ethernet , Audio и т.д., а также взаимодействует с базовой системой ввода-вывода (BIOS ).

Начинающие пользователи компьютерной техники часто задают вопрос: материнская плата что это. Так вот, схема системной платы включает в себя множество слотов для установки дочерних комплектующих. Так, для установки процессора используется специальное гнездо — сокет (socket). Чтобы задействовать оперативную память, её достаточно разместить в специальных слотах, которые, как правило, находятся справа от гнезда процессора. Видеокарта , размещается в слоте x16 шины PCI-Express.

Прочие комплектующие выпускаются под слоты PCI-Express x1 и PCI. Шина PCI является устаревшей и присутствует в дешевом сегменте материнских плат. Для подключения жёстких дисков применяются SATA-разъёмы. Помимо этого, материнская плата имеет коннекторы для подключения: фронтальной панели системного блока, индикаторов, кнопок старта и перезагрузки системы, а также разъёмы для подключения блока питания и системы охлаждения.

Основные характеристики материнской платы

Форм-фактор

Когда вы еще хорошо не знаете компьютер, поэтому можете спросить: материнская плата что это? По этой причине, когда будете выбирать системную плату, в первую очередь обратите внимание на её форм-фактор: E-ATX, Standard ATX или просто ATX, micro-ATX, mini-ITX и mini-STX. Системная плата, элементарно, должна поместиться в ваш системный блок. Корпус должен строго соответствовать форм-фактору материнской платы для обеспечения наилучшей совместимости.

Сокет

Следующее, на что нужно обратить внимание — это процессорный разъем. Сокет является важным параметром и должен соответствовать сокету процессора. Будьте внимательны! Выбор правильного сокета зависит не только от фирмы производителя — Intel или AMD , но и от линейки которой принадлежит конкретный процессор.

Оперативная память Учитывайте такие характеристики, как число слотов для установки планок оперативной памяти. От этого параметра, зависит сможете ли вы в будущем увеличить объем ОЗУ своего ПК «безболезненно». При необходимости, вы просто добавите планку памяти в свободный слот и вам не придётся менять оперативную память полностью, что весьма накладно. Что касается максимальной частоты, на которой работает ОЗУ, её должен поддерживать не только контроллер памяти материнской платы, но и процессор. На данный момент, актуальными высокоскоростными характеристиками обладает стандарт памяти DDR4 .

Слоты шины PCI-Express и PCI

Если вы планируете установку двух видеокарт, позаботьтесь о наличии минимум двух слотов PCI-Express x16. Прочие платы, как правило, выпускаются под формат PCI-Express x1. К ним можно отнести: звуковые карты , Wi-Fi-модули, DVB-S2 карты (для работы со спутниковым сигналом) и т.д. Присутствие или отсутствие слотов шины PCI не столь критично. Стандарт считается устаревшим, а разъём может понадобиться лишь в том случае, если вы обладаете платой расширения использующей данный слот.

Интерфейс SATA

Материнская плата должна поддерживать интерфейс SATA-III (6 Гбит/с) для подключения HDD и/или высокоскоростных SSD дисков. Чем больше SATA-разъёмов установлено на материнской плате, тем больше жестких дисков вы сможете задействовать.

Интерфейсные разъемы на задней панели

Чем большее число интерфейсных разъемов и их разновидностей, тем лучше.

Функция разгона (overclocking)

Данная функция пригодится в том случае, если вы будете использовать процессор со свободным множителем.

Производство материнских плат

P.S. При выборе материнской платы, не стоит ориентироваться на имя производителя. У каждой компании есть свои продукты лидеры и продукты аутсайдеры. Выбор за вами.

Ремонт материнских плат для начинающих и не только, теория, полезные советы

>
Компьютер с нуля

Основные компоненты, установленные на материнской (системной) плате:

1. Центральный процессор — установлен в спец. разъем и охлаждается радиатором и вентилятором.

2. Набор системной логики (англ. chipset) — набор микросхем, обеспечивающих подключение ЦПУ к ОЗУ и контроллерам периферийных устройств. Как правило, современные наборы системной логики строятся на базе двух СБИС: «северного» и южного мостов».Именно набор системной логики определяет все ключевые особенности системной платы и то, какие устройства могут подключаться к ней.

3. Оперативная память (также оперативное запоминающее устройство, ОЗУ)

4. Загрузочное ПЗУ — хранит ПО, которое исполняется сразу после включения питания. Микросхемы перепрограммируемой памяти, в которой хранятся программы BIOS, программы тестирования ПК, загрузки ОС, драйверы устройств, начальные установки.

5. Разъемы для подключения дополнительных устройств (слоты) PCI / ISA / AGP/ PCI-E, разъемы для подключения накопителя на ГМД и ЖД.

Все компоненты мат.пл. связаны между собой системой проводников (линий), по которым происходит обмен информацией. Эти линии называют информационной шиной(Bus).

Взаимодействие между компонентами и устройствами ПК, подключенными к разным шинам, осуществляется с помощью мостов, реализованных на одной из микросхем Chipset. (например соединение шины ISA и PCI реализовано в микросхеме 82371АВ).

Размеры платы стандартизированы, их надо согласовывать с размером и типом корпуса ПК. При ее установке следует исключить контакт с дном и боковыми металлическими панелями корпуса, во избежание короткого замыкания.

Характеристики материнской платы

Поколение процессора под который предназначена материнская плата Устанавливать процессор одного поколения в материнскую плату другого нельзя. (Pentium, PII, PIII, PIV, Athlon). От того какой максимально мощный процессор использует ваша материнская плата зависит в принципе, сколько времени она у Вас прослужит.
Диапазон поддерживаемых процессором тактовых частот в рамках одного поколения. Обычно чем дороже плата, тем больше диапазон процессорных частот она поддерживает. Если плата поддерживает частоты 1700-1800 МГч, то процессор с частотой 2,1 ГГц не вставить.
Частота системной шины напрямую связана с частотой и скоростью работы про цессора. ЦП практически умножает рабочую частоту мат.пл. в 2-3раза. На выборе сочетания одного из коэффициентов с частотой системной шины основан способ разгона процессора. Разго-нять процессор следует осторожно, ибо, в следствие перегрева, он может сгореть. Intel иногда ставит специальные противоразгонные блокировки.
Базовый набор микросхем (chipset).От модели чипсета зависят основные характеристики мат.пл.: поддерживаемые процессоры и ОП, тип системной шины, порты внешних и внутренних устройств. На одних и тех же чипсетах строятся различными фирмами мат. платы. Существует несколько базовых чипсетов. Intel, VIA, Nvideo, Ali, Sis
Примеры INTEL 845D 845E 845G 845РЕ 850E
Фирма-производитель ABIT, ACORP, ASUSTEK, GIGABITE, INTEL, ELITEGROUP
Форм-фактор – способ расположения основных микросхем и слотов Baby AT, AT, ATX и ATX-2.1, WTX
ATX (AT extension) разработан фирмой INTEL в 1995г.– появление его обусловлено наличием в ПК большого числа всевозможных внутренних устройств, большой интеграцией микросхем на мат.пл., что повысило требования к охлаждению элементов. Необходим был более удобный дос-туп к внутренним устройствам. Отличия AT и ATХ корпусов:
a) блоки питания: конструкция, размер, разъем для подачи питания на плату, мощ-ность(300,330,350,400 VA). Расширенное управление питанием, в спящем режиме эл.потребление = 0.
б) наличие интегрированных на плату внешних портов, уменьшает число кабелей внутри сис-темного блока (корпуса), облегчается доступ к компонентам системного блока. Порты распола-гаются компактно в ряд на задней стенке системного блока.
в) слоты расширения позволяют устанавливать полноразмерные карты расширения.
г) разъемы дисководов расположены рядом с их предполагаемыми посадочными местами, что позволяет использовать более короткие кабели.
АТХ-2.1 – усовершенствованный ATX Платформа для Р4. Усовершенствования коснулись блока питания с двумя дополнительными выходами к ядру процессора. Дополнительно второй для усиления питающих линий. Тяжелый радиатор ЦП прикреплен к плате винтами, поэтому давле-ние на плату не оказывается.
Базовый набор слотов и разъемов. Количество разъемов и их тип. (тип и количество ОП, AGP, PCI, ISA)
Наличие встроенных устройств. На материнской плате присутствуют чипы видео, звуковой, сетевой карт.

Мат.платы с интегрированными звуком, видео, сетью адаптерами (интегрированные)

Казалось бы это чуть дешевле, чем покупка отдельных компонентов, но такая интеграция имеет и свои недостатки:
1) Звук и видео встроенные платы имеют обычно очень скромные возможности
2) Даже если в данный момент вам и достаточно данных возможностей, то через полгода ситуа-ция может в корне измениться. мат. карта морально стареет гораздо медленнее, чем, скажем видеокарта.
3) Комбинированные карты на практике ведут себя обычно гораздо капризнее, чем карты с от-дельными устройствами. Возможны зависания во время работы программ и при тестирова-нии оборудования. Стоит подумать, прежде чем решиться на покупку комбинированной платы.

Виды разъемов материнской платы

Разъем для установки процессора. Для различных видов процессоров он свой. Назову основные используемые.

Intel Pentium — Socket — для PIII-IV – Socket 370, P4 Socket 423\Socket 478– квадратная форма с многочисленными гнездами по периметру квадрата – сокет. Для современных процессоров ( Intel Pentium 4, Pentium D, Celeron D, Pentium EE, Core 2 Duo, Core 2 Extreme, Celeron, Xeon серии 3000, Core 2 Quad — Socket T (LGA775). Для PII – Slot1.

Для процессоров фирмы AMD K7 –Slot A, Socket 462 – узкий щелевидный разъем – слот (Athlon, Athlon XP, Sempron, Duron). Socket AM2 и АМ3— поддержка памяти DDR2 и DDR3 соответственно.

PCI – разъем обычно самый короткий на плате, белый, разделенный перемычкой на 2 части. В него может быть установлена видеокарта, звуковая карта, сетевая плата, внутренний модем, спе-циальные карты сканеров и др.(типа PCI). Высокая производительность, автоматическая на-стройка подключаемых контроллеров, малая нагрузка на процессор и независимость от типа ЦП. Например процессор может работать с памятью, в то время по шине PCI передаются данные. Основополагающим принципом шины PCI является применение так называемых мостов (Bridges), которые осуществляют связь шины с другими компонентами системы. Другой особен-ностью является реализация так называемых принципов Bus Master\ Bus Slave. Карта PCI Bus Master может считывать данные из ОП, так и записывать их туда без обращения к процессору, а Bus Slave только считывать данные. В шине PCI используется способ передачи данных названный способом рукопожатия (handshake), заключается в том, что в системе определяются 2 устройства: передающее (Iniciator) и приемное (Target). Когда передающее устройство готово к передаче, оно выставляет данные на линии данных и сопровождает их соответствующим сигналом (Iniciator Ready), при этом прием-ное устройство записывает данные в свои регистры и подает сигнал Target Ready, подтверждая запись данных и готовность к приему следующих. Установка всех сигналов производится строго в соответствии с тактовыми импульсами шины.

ISA – (Industry Standart Architecture) 16 разрядная архитектура. EISA – 32х-разрядная архитекту-ра (расширенный ISA). Более медленный интерфейс, чем предыдущий PCI. Слоты длинне в 1,5 раза и черного цвета. К ним обычно подключается множество дополнительных карт. Обычно их 2-4 шт. В современных ПК(Р4 К7 этих медленных разъемов нет).

AGP (Advanced\Accelerated Graphic Port) – ускоренный графический порт. Pro (профессиональ-ная серия). Это отдельное соединение находящееся между ЦП и графическим контроллером, что дает возможность процессору быстрее посылать команды на ИС графики, а графическому кон-троллеру — обмениваться данными с основной памятью со значительно большей скоростью. По-зволяет подключить одно устройство, дополняя шину PCI. Благодаря этому становится целесо-образным хранить 3х-мерные текстурные карты в основной памяти, а не предусматривать до-полнительную память в составе графической подсистемы. По существу AGP представляет собой усовершенствованный вариант PCI, способный обеспечивать более высокие скорости передачи данных. AGP обеспечивает внутренний прямой путь между графическим адаптером (SVGA) и основной памятью ПК. Предназначен для задач с графикой: 3D-игры, вывод сцен с виртуальной реальностью, сложная обработка видеоизображений (слайдов, фотографий).

Слоты для установки ОП

В них имеются замки-защелки. Используются слоты 3х видов памяти типа Dimm – DDR, DDRII, DDRIII) . Количество слотов может быть от 2-4.

Контроллеры портов – разъемы на задней стенке ПК
а) параллельные порты (LPT1, LPT2) – 25 гнезд(дырочек чаще голубого или розового цвета) – для подключения принтеров и сканеров
б)последовательные порты (Com1 Com2) 9 или 25 штырьков. Для подключения мыши, внешнего модема. Параллельные порты выполняют операции вв/выв с большей скоростью, чем последовательные засчет использова-ния большего числа проводов в кабеле. Некоторые устройства (модемы) могут подключаться и параллельным и к последовательным портам.
в)PS2 – небольшой круглый разъем для мыши и клавиатуры. Зеленый – мышь, сереневый – клавиатура.
г)порт USB (Universal Serial Bus) USB2 – универсальная последовательная шина. Позволяет подключать к ПК мно-жество внешних устройств, соединенных в цепочку. (первое к ПК, второе к первому …). Для подключения принте-ров, сканеров, фотоаппаратов и др. Представляет из себя 2 пары скрученных проводов для передачи данных каждом направлении (дифференциальное включение) и линию питанию. Один порт может адресовать 63 устройства (USB2 -100). Таким образом к компьютеру может быть подключено только одно периферийное устройство, а все осталь-ные(клавиатура, мышь, модем) соединяются с концентратором, который встроен в монитор, клавиатуру или другой USB-устройство. USB может подключаться в топологии звезда или общая шина. Передача данных осуществляется как в синхронном так и в асинхронном режиме. Скорость передачи 12-15 Мбит/сек. У USB есть возможность со-единения с цифровой телефонной линией без дополнительных плат. Конфигурирование устройств к USB осуществ-ляется автоматически.
д)игровой порт (15 гнезд) подключается джойстик. Имеется не у всех ПК.
е)RAID-контроллер. RAID- архитектура предусматривает, что любая информация хранится по крайней мере на двух отдельных жестких дисках, если один из них выходит из строя, то пользователи по прежнему имеет доступ к храни-мым на сервере файлам, так что отказы дисков не приводят к простоям. Архитектура RAID обеспечивает не только целостность данных, но и расслоение дисковой памяти. Данные записываются на несколько накопителей методом чередования, так что в операции считывания и записи одновременно участвуют несколько дисков. В результате по-вышается производительность, ибо дисковая подсистема перестает быть ограничивающим скорость фактором.

Давайте дружить!

Материнская плата стандарта ATX персонального компьютера (модель MSI K7T266 Pro2) Схема материнской платы IBM PC совместимого компьютера. В последних поколениях процессоров, таких как Intel Skylake, северный мост расположен на самом процессоре.

Матери́нская (систе́мная) пла́та (от англ. motherboard, MB или англ. mainboard — главная плата) — печатная плата, являющаяся основой построения модульного устройства, например — компьютера.

Материнская плата содержит основную часть устройства, дополнительные же или взаимозаменяемые платы называются дочерними или платами расширений.

Классификация материнских плат по форм-фактору

Основная статья: Форм-фактор (техника)

Форм-фактор материнской платы — стандарт, определяющий размеры материнской платы для компьютера, места её крепления к шасси; расположение на ней интерфейсов шин, портов ввода-вывода, разъёма процессора, слотов для оперативной памяти, а также тип разъема для подключения блока питания.

Форм-фактор (как и любые другие стандарты) носит рекомендательный характер. Спецификация форм-фактора определяет обязательные и опциональные компоненты. Однако подавляющее большинство производителей предпочитают соблюдать спецификацию, поскольку ценой соответствия существующим стандартам является совместимость материнской платы и стандартизированного оборудования (периферии, карт расширения) других производителей (что имеет ключевое значение для снижения стоимости владения, англ. TCO).

  • Устаревшими являются форматы: Baby-AT; полноразмерная плата AT; LPX; BTX, MicroBTX и PicoBTX.
  • Современные и массово применяемые форматы: ATX; microATX; Mini-ITX.
  • Внедряемые форматы: Nano-ITX; Pico-ITX; FlexATX; NLX; WTX, CEB.

Существуют материнские платы, не соответствующие никаким из существующих форм-факторов (см. таблицу). Это принципиальное решение производителя, обусловленное желанием создать на рынке несовместимый с существующими продуктами «бренд» (Apple, Commodore, Silicon Graphics, Hewlett-Packard, Compaq чаще других игнорировали стандарты) и эксклюзивно производить к нему периферийные устройства и аксессуары.

Предназначение компьютера (бизнес, персональный, игровой) в значительной степени влияют на выбор поставщика материнской платы.

  • Для нужд SOHO или предприятия выгоднее приобретение готового компьютера (или решения, например, «клиент-сервер» или блейд-сервер с закупкой или лизингом готового решения).
  • Для персонального пользования в качестве основного устройства позиционируется портативный компьютер. Материнские платы ноутбуков существенно отличаются от материнских плат настольных компьютеров: для сокращения габаритов компьютера в плату оригинальной схемотехники встраивается (интегрируется) множество отдельных периферийных плат (например, встраивается видеокарта) — это обеспечивает компактные габариты и низкое энергопотребление ноутбука, но приводит к меньшей надёжности, проблемам с теплоотводом, значительному увеличению стоимости материнских плат, а также отсутствию взаимозаменяемости.

Таким образом, покупка отдельной материнской платы обоснована созданием компьютера «особой» конфигурации, например, малошумного или игрового.

Технологии энергосбережения

Повышенное внимание к «зеленым» технологиям, требующим энергосберегающих и экологически безопасных решений, и обеспечение важных для материнских плат характеристик, вынудило многие компании-производители разрабатывать различные решения в этой области.

С постоянным увеличением популярности электронных приборов на протяжении ближайших 20—30 лет Евросоюз решил ввести эффективную стратегию для решения вопросов энергопотребления. Для этого были выпущены требования по энергоэффективности — ErP (Energy-related Products) и EuP (Energy Using Product). Стандарт разработан для определения энергопотребления готовых систем. По требованию ErP/EuP, система в выключенном состоянии должна потреблять менее 1 Вт мощности.

Спецификации ErP/EuP 2.0 намного строже первой версии. Для соответствия ErP/EuP 2.0 (вступила в действие в 2013 году) полное энергопотребление компьютера в выключенном состоянии не должно превышать 0,5 Вт.

  • EPU Engine
  • Ultra Durable (версии 1, 2 и 3) — технология от Gigabyte, призванная улучшить температурный режим и надежность работы материнской платы, которая подразумевает:
    • Увеличенная (удвоенная) толщина медных слоев толщиной 70 мкм (2 унции/фут²) как для слоя питания, так и для слоя заземления системной платы снижает полное сопротивление платы на 50 %, что обеспечивает снижение рабочей температуры компьютера, повышение энергоэффективности и улучшение стабильности работы системы в условиях разгона.
    • Использование полевых транзисторов, обладающих пониженным сопротивлением в открытом состоянии (RDS(on)). Транзисторы преобразователей питания +12 вольт выделяют относительно много тепла и, когда говорят об охлаждении подсистемы питания процессора, то подразумевают именно их.
    • Использование дросселей с ферритовым сердечником — эти дроссели обеспечивают меньшие потери энергии и меньший уровень электромагнитного излучения.
    • Использование бессвинцового припоя.
    • Повторное использование картона и пластика упаковки.

> См. также

  • Barebone

> Примечания

  1. CU29льная технология // gigabyte.ru
  2. Ultra Durable 3 Ferra.ru

> Литература

  • Скотт Мюллер. Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17-е изд. — М.: Вильямс, 2007. — С. 241—443. — ISBN 0-7897-3404-4.

Основные характеристики материнских плат

Форм-фактор, или типоразмер системной платы, определяет ее размеры, тип разъема питания, расположение элементов крепления (отверстий, клипсов), размещение разъемов различных интерфейсов и т. д.

Форм-фактор АТХ был предложен фирмой Intel в 1995 г и в настоящее время большинство материнских плат имеют этот формат. К его возможностям относятся: размещение портов ввода-вывода на системной плате; встроенный разъем мыши типа PS/2; расположение IDE, ATA-разъемов и разъемов контроллера дисководов ближе к самим устройствам; перемещение гнезда процессора на заднюю часть платы, рядом с блоком питания; использование единственного 20-контактного разъема питания. Предусмотрена возможность управления режимами работы блока питания со стороны контроллера системной платы. Вентилятор блока питания является нагнетающим, поэтому на материнскую плату попадает меньше пыли, а воздух, поступающий из блока питания, сначала охлаждает процессор.

LPX. В них платы расширения устанавливаются параллельно системной плате, посредством переходника с повернутыми на 90 градусов разъемами. За счет этого получается очень плоская конструкция, но число таких разъемов невелико (обычно не более трех), а термические условия работы компонентов весьма напряженные.

NLX. Системная плата разделена на две части. В специальный разъем (получивший название NLX Riser Connector), непосредственно примыкающий к блоку питания, вставляется процессорная плата (содержит процессор, BIOS, слоты для модулей оперативной памяти). Кроме контактов питания разъем имеет информационную (системную) шину. Другая плата (названная riser caret), установлена в корпусе компьютера стационарно (то есть является неотъемлемой частью компьютерной системы) и может иметь слоты интерфейсов PCI, USB, IEEE 1394 и любых других имеющихся и перспективных стандартов. Таким образом, после установки процессорная плата автоматически оказывается подключенной к питанию и к шинам интерфейсов.

Форм-фактор NLX обеспечивает легкую установку процессорной платы. Теперь к ней не подведены никакие кабели и шлейфы, разъемы плат расширения расположены отдельно. Благодаря наличию стационарной отдельной платы с разъемами расширения и встроенными контроллерами ликвидируется обычный сегодня хаос с кабелями.

Процессорный интерфейс. Обычно системный набор создается конструкторами с ориентацией на конкретную линейку процессоров. То есть, обеспечивается поддержка опре­деленного процессорного интерфейса. В это понятие включают тип разъема (механические параметры), его электрические параметры (разводка контактов, напряжение питания ядра и блоков ввода-вывода процессора), возможности BIOS по поддержке конкретных моделей процессоров.

BIOS. Важным элементом системной платы является BIOS (BasicInput/Output System – базовая система ввода-вывода). Так называют аппаратно встроенное в компьютер программное обеспечение, которое доступно без обращения к диску. В микросхеме BIOS содержится программный код, необходимый для управления клавиатурой, видеокартой, дисками, портами и другими компонентами, а также для загрузки операционной системы с диска.

Обычно BIOS размещается в микросхеме ПЗУ (ROM, Read-Only Memory), расположенной на материнской плате компьютера. Такая технология позволяет обеспечить постоянную доступность BIOS независимо от работоспособности внешних по отношению к материнской плате компонентов (например, загрузочных дисков). Поскольку доступ к RAM (оперативной памяти) осуществляется значительно быстрее, чем к ROM, многие изготовители предусматривают при включении питания автоматическое копирование BIOS из ROM в оперативную память. Задействованная при этом область оперативной памяти называется теневым ПЗУ (Shadow ROM).

В настоящее время большинство современных материнских плат комплектуется микросхемами Flash BIOS, код в которых может перезаписываться при помощи специальной программы. Такой подход облегчает модернизацию BIOS при появлении новых компонентов, которым нужно обеспечить поддержку (например, новейших типов микросхем оперативной памяти). Так как львиная доля программного кода BIOS стандартизирована, то есть является одинаковой и обязательной для всех компьютеров PC, в принципе менять его нет особой необходимости. Перезапись BIOS – крайне ответственная и весьма непростая задача. Браться за нее следует только в самом крайнем случае, когда проблема не решается никакими другими способами. При этом надо ясно отдавать себе отчет в необходимости и последствиях каждого шага этой операции.

Работа таких стандартных устройств, как клавиатура, может обслуживаться программами, входящими в BIOS, но такими средствами нельзя обеспечить работу со всеми возможными устройствами. Так, например, изготовители BIOS абсолютно ничего не знают о параметрах наших жестких и гибких дисков, им не известны ни состав, ни свойства произвольной вычислительной системы. Для того чтобы начать работу с другим оборудованием, программы, входящие в состав BIOS, должны знать, где можно найти нужные параметры. По очевидным причинам их нельзя хранить ни в оперативной памяти, ни в постоянном запоминающем устройстве.

Специально для этого на материнской плате есть микросхема “энергонезависимой памяти”, по технологии изготовления называемая CMOS. От оперативной памяти она отличается тем, что ее содержимое не стирается во время выключения компьютера, а от ПЗУ она отличается тем, что данные в нее можно заносить и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы. Эта микросхема постоянно подпитывается от небольшой батарейки, расположенной на материнской плате. Заряда этой батарейки хватает на то, чтобы микросхема не теряла данные, даже если компьютер не будут включать несколько лет.

В микросхеме CMOS хранятся данные о гибких и жестких дисках, о процессоре, о некоторых других устройствах материнской платы. Тот факт, что компьютер четко отслеживает время и календарь (даже и в выключенном состоянии), тоже связан с тем, что показания системных часов постоянно хранятся (и изменяются) в CMOS.

Таким образом, программы, записанные в BIOS, считывают данные о составе оборудования компьютера из микросхемы CMOS, после чего они могут выполнить обращение к жесткому диску, а в случае необходимости и к гибкому, и передать управление тем программам, которые там записаны.

Шинные интерфейсы материнской платы. Связь между всеми собственными и подключаемыми устройствами материнской платы выполняют ее шины и логические устройства, размещенные в микросхемах микропроцессорного комплекта (чипсета). От архитектуры этих элементов во многом зависит производительность компьютера.

PCI. Интерфейс PCI (Peripheral Component Interconnect – стандарт подключения внешних компонентов) был введен в персональных компьютерах, выполненных на базе процессоров Intel Pentium. По своей сути это тоже интерфейс локальной шины, связывающей процессор с оперативной памятью. До недавнего времени она обладала достаточной скоростью для своих периферийных устройств, начиная от звуковых карт, контроллеров USB, компонентов ввода/вывода и заканчивая контроллерами жёстких дисков. Поскольку видеокарты начали требовать большую пропускную способность, появился интерфейс AGP.

Для современных материнских плат PCI стала «узким местом», так как она предоставляет (в стандартном варианте) пропускную способность до 264 Мбайт/с, поделённую между всеми слотами в системе (для 32-разрядных данных). Быстродействие периферийных устройств постоянно увеличивалось, и всё чаще компоненты типа графических карт, жёстких дисков, контроллеров USB и гигабитных сетевых карт Ethernet вступали в битву за пропускную способность – потому, что данные по шине PCI желали одновременно передать несколько устройств.

Важным особенностью стандарта является поддержка режима plug-and-play. Его суть состоит в том, что после физического подключения внешнего устройства к разъему шины PCI происходит обмен данными между устройством и материнской платой, в результате которого устройство автоматически получает номер используемого прерывания, адрес порта подключения и номер канала прямого доступа к памяти.

FSB. Шина используется для связи процессора и памяти. Она имеет название Front Side Bus (FSB). Эта шина работает на очень высокой частоте 1333/1066/800 МГц. Частота шины FSB является одним из основных потребительских параметров – именно он и указывается в спецификации материнской платы. Пропускная способность шины FSB при частоте 100 МГц составляет порядка 800 Мбайт/с.

AGP. Это шина ускоренного графического порта. Интерфейс AGP, специально разработанный для графических карт в середине 90-х, обеспечивает 2 Гбайт/с в своей последней версии (AGP 8x)

PCI-Express. Новая шина предназначается для замены как PCI, так и AGP. Однако, несмотря на схожесть названия с PCI, она не имеет с ней ничего общего. PCI Express использует принцип последовательной передачи, который позволяет достичь более высоких тактовых частот. Шина обеспечивает одновременную передачу данных в двух направлениях с одинаковой скоростью.

На данный момент можно говорить о том, что слотом расширения для будущих материнских плат станет PCI Express x1. В данном случае «x1» означает, что слот будет использовать одну линию PCI Express, обеспечивающую пропускную способность 250 Мбайт/с (500 Мбайт/с, если учитывать пропускную способность в двух направлениях). Кроме того, периферийным устройствам больше не придётся конкурировать за пропускную способность, поскольку каждый слот обеспечивает индивидуальные 250 Мбайт/с в одном направлении.

Видеокарты подключаются к слоту PCI Express x16. Это означает использование 16 линий, что обеспечивает максимальную пропускную способность 4 Гбайт/с или 8 Гбайт/с, если сложить 4 Гбайт/с в обоих направлениях. Но суммарную пропускную способность всё же следует рассматривать как маркетинговое значение – оно не слишком актуально для конечных пользователей, поскольку для графики важна пропускная способность в одном направлении. Таким образом, шина PCI Express x16 имеет в 2 раза больше пропускную способность, чем AGP 8x для графических карт.

USB (Universal Serial Вus – универсальная последовательная магистраль). Это одно из последних нововведений в архитектурах материнских плат. Этот стандарт определяет способ взаимодействия компьютера с периферийным оборудованием. Он позволяет подключать до 256 различных устройств, имеющих последовательный интерфейс. Устройства могут включаться цепочками (каждое следующее устройство подключается к предыдущему). Производительность шины USB относительно невелика и составляет до 1,5 Мбит/с, но для таких устройств, как клавиатура, мышь, модем, джойстик и т. п., этого достаточно. Удобство шины состоит в том, что она практически исключает конфликты между различным оборудованием, позволяет подключать и отключать устройства в “горячем режиме” (не выключая компьютер) и позволяет объединять несколько компьютеров в простейшую локальную сеть без применения специального оборудования и программного обеспечения.

Технические характеристики USB 1.1:

– две скорости:

высокая скорость обмена – 12 Мбит/с

низкая скорость обмена — 1,5 Мбит/с

– максимальная длина кабеля для низкой скорости обмена — 5 м

– максимальная длина кабеля для высокой скорости обмена — 3 м

– максимальное количество подключённых устройств (включая размножители) – 127

– возможно подключение устройств с различными скоростями обмена

– напряжение питания для периферийных устройств – 5 В

– максимальный ток потребления на одно устройство – 500 мA

USB 2.0 отличается от USB 1.1 только большей скоростью и небольшими изменениями в протоколе передачи данных для режима Hi-speed (480 Мбит/сек). Существуют три скорости работы устройств USB 2.0:

Low-speed, 10÷1500 Кбит/c (используется для интерактивных устройств: клавиатуры, мыши, джойстики)

Full-speed, 0,5÷12 Мбит/с (аудио-, видеоустройства)

Hi-speed, 25÷480 Мбит/с (видеоустройства, устройства хранения информации)

Хотя в теории скорость USB 2.0 может достигать 480 Мбит/с (60 МБайт/с), устройства типа жёстких дисков и вообще любых носителей информации в реальности никогда не достигают такой скорости обмена по шине, хотя и могут развивать её. Это можно объяснить достаточно большими задержками шины USB между запросом на передачу данных и собственно началом передачи. Например, другая шина FireWire хотя и обеспечивает максимальную скорость в 400 Мбит/с, что на 80 Мбит/с меньше, чем у USB, в реальности позволяет достичь больших скоростей обмена данными с жёсткими дисками и другими устройствами хранения информации.

USB 3.0 должен прийти на смену современному стандарту версии 2.0 и принесет с собой десятикратное увеличение пропускной способности – до 4,8 Гбит/с, или 600 Мб/с, тогда как современный вариант USB 3.0 скорее всего появится в 2010 году.

IEEE 1394 (FireWire, i-Link) – последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами. Бурное развитие IEEE 1394 придало появление любительских DV камер. И сегодня IEEE 1394 практически монополизировал этот быстро развивающийся рынок. Сегодня любая, произведённая сегодня DV камера в обязательном порядке оснащается IEEE 1394 интерфейсом.

Главные особенности IEEE 1394:

– Цифровой интерфейс – позволяет передавать данные между цифровыми устройствами без потерь информации

– Небольшой размер – тонкий кабель заменяет груду громоздких проводов

– Простота в использовании – отсутствие терминаторов, идентификаторов устройств или предварительной установки

– Горячее подключение – возможность переконфигурировать шину без выключения компьютера

– Небольшая стоимость для конечных пользователей

– Различная скорость передачи данных – 100, 200 и 400 Мбит/с (800, 1600Мбит/с IEEE 1394b). Высокая скорость дает возможность обработки мультимедиа-сигнала в реальном времени

– Гибкая топология – равноправие устройств, допускающее различные конфигурации (возможность «общения» устройств без компьютера )

– Открытая архитектура – отсутствие необходимости использования специального программного обеспечения

– Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До полутора ампер и напряжение от 8 до 40 вольт

– Подключение до 63 устройств

– Последовательная шина вместо параллельного интерфейса позволила использовать кабеля малого диаметра и разъёмы малого размера.

– Питание внешних устройств через IEEE 1394 кабель

– Простота конфигурации и широта возможностей. Через IEEE 1394 может работать самое различное оборудование, причём пользователю не придётся мучиться вопросом, как это всё правильно подключить

– Поддержка асинхронной и синхронной передачи данных

Асинхронная передача означает, что данные обязательно будут доставлены в целости и сохранности, пусть и не всегда в срок. Получение каждого пакета проверяется и подтверждается, если пакет не дошёл, передача будет повторена заново.

Синхронная передача означает, что скорость и непрерывность потока важнее, чем сохранность данных. Если пакет пришёл с ошибкой, или не пришёл вообще, это даже не проверяется, не говоря уже о том, чтобы переслать пакет заново. Этот тип передачи отлично подходит для мультимедийных приложений, где потеря какой-либо части информации менее критична, чем большая задержка.

В 2004 году увидел свет стандарт IEEE 1394.1. Этот стандарт был принят для возможности построения крупномасштабных сетей и резко увеличивает количество подключаемых устройств до гигантского числа – 64449.

FILED UNDER : Железо

Submit a Comment

Must be required * marked fields.

:*
:*